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Weighted Erdős–Kac theorems via computing moments

by

Kai (Steve) Fan

Abstract. By adapting the moment method developed by Granville and Soundarara-
jan (2007), Khan, Milinovich and Subedi (2022) obtained a weighted version of the Erdős–
Kac theorem for ω(n) with multiplicative weight dk(n), where ω(n) denotes the number
of distinct prime divisors of a positive integer n, and dk(n) is the k-fold divisor function
with k ∈ N. In the present paper, we generalize their method to study the distribution
of additive functions f(n) weighted by nonnegative multiplicative functions α(n) in a
wide class. In particular, we establish uniform asymptotic formulas for the moments of
f(n) with suitable growth rates. We also prove a qualitative result on the moments which
extends a theorem of Delange and Halberstam (1957). As a consequence, we obtain a
weighted analogue of the Kubilius–Shapiro theorem.
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1. Introduction. The celebrated Erdős–Kac theorem, first proved by
Erdős and Kac [15] in 1940, states that if ω(n) denotes the number of distinct
prime divisors of a positive integer n, then

(1.1) lim
x→∞

1

x
·#

{
n ≤ x :

ω(n)− log log n√
log logn

≤ V

}
= Φ(V )
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for any given V ∈ R, where

Φ(V ) :=
1√
2π

V�

−∞
e−v2/2 dv

is the cumulative distribution function of the standard Gaussian distribution.
This statistical result is a direct upgrade of an earlier theorem of Hardy and
Ramanujan on the normal order of ω (see [21] and [22, Theorem 431]), which
asserts that given any ϵ > 0, the inequality |ω(n) − log logn| < ϵ log log n
holds for all but o(x) values of n ≤ x. In fact, Erdős and Kac proved in
the same paper a more general result in which the function ω is replaced
by any strongly additive function f that is bounded on primes and admits
an unbounded “variance”

∑
p≤x f(p)

2/p. Recall that an arithmetic function
f : N → C is additive if f(mn) = f(m) + f(n) for all positive integers
m,n ∈ N with gcd(m,n) = 1, and it is strongly additive if it also satisfies
f(pν) = f(p) for all prime powers pν . Thus, strongly additive functions
are completely determined by their values at primes, which makes them a
particularly nice subclass of additive functions. In fact, it can be shown that
(1.1) also holds for Ω(n) in place of ω(n), where Ω(n) denotes the total
number of prime factors of n, counting multiplicity, by exploiting the fact
that ω and its cousin Ω do not differ very much on average:

(1.2)
∑
n≤x

(Ω(n)− ω(n)) = O(x).

The original proof of the Erdős–Kac theorem (1.1) combines the central
limit theorem with Brun’s sieve and is quite complicated. Later, LeVeque
[25, Theorem 1] introduced some modifications and obtained a quantitative
version of (1.1) with a rate of convergence O(log log log x/

√
log log x). Using

a deep analytic approach, Rényi and Turán [28] improved upon LeVeque’s
result with a rate of convergence O(1/

√
log log x), which is best possible

in the sense that it cannot be improved to o(1/
√
log log x) without loss of

uniformity in V .
A third approach to (1.1), first suggested by Kac [23], examines the mo-

ments of ω. In probability theory, the moments of a random variable X often
provide valuable information about its distribution. For example, an appli-
cation of Markov’s inequality yields P(|X| > c) ≤ E|X|k/ck. Given all the
moments E|X|k <∞, one may select k that minimizes this tail estimate. If
X happens to obey a Gaussian law, then it is completely determined by its
moments, a direct consequence of [3, Theorem 30.1] or [10, Theorem 3.3.26].
Consequently, by [3, Theorem 30.2], one reduces the proof of (1.1) to that
of the asymptotic formula

(1.3)
1

x

∑
n≤x

(ω(n)− log log x)m = (µm + o(1))(log log x)m/2
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for every m ∈ N. Here µm is the mth moment of a standard Gaussian
distribution given by

µm =

{
m!/m!! if 2 |m,
0 otherwise.

The case m = 1 follows from Mertens’ second theorem [22, Theorem 427],
and the case m = 2 was settled by Turán [34]. Early proofs of (1.3) for
all k are due to Delange [6] in 1953 and Halberstam [18] in 1955, both
of which are very complicated. Later, Delange [7] provided an elementary
proof of (1.3) for strongly additive functions. Halberstam’s proof was also
simplified and rendered more transparent by Billingsley [2] in 1969. In 2007,
Granville and Soundararajan [17] derived asymptotic formulas for the mo-
ments which hold uniformly in the range m ≤ (log log x)1/3. Their method,
which may be viewed to some extent as a clever and efficient repacking of
Billingsley’s, is so flexible that it can be modified to study the distribu-
tion of values of additive functions in a rather general sieve-theoretic frame-
work.

More generally, one can study the distribution of values of ω(n) weighted
by certain nonnegative multiplicative functions α(n). For instance, Elliott
[13] showed, based on the Landau–Selberg–Delange method, that

lim
x→∞

(∑
n≤x

d(n)c
)−1 ∑

n≤x
ω(n)≤2c log log x+V

√
2c log log x

d(n)c = Φ(V )

for any given c ∈ R and V ∈ R, where d(n) denotes the number of pos-
itive divisors of n. Building on the method of Granville and Soundarara-
jan, Khan, Milinovich and Subedi [24] recently proved an analogue for the
weight dk(n) with mean k log log x and variance k log log x, where dk(n) :=
#{(a1, . . . , ak) ∈ Nk : a1 · · · ak = n}. There is now a vast literature on
weighted versions of the Erdős–Kac theorem with general weights, includ-
ing the early work of Alladi [1] and the more recent works of Elboim and
Gorodetsky [11] and Tenenbaum [32, 33]. Alladi made use of Halberstam’s
approach to prove weighted Erdős–Kac type results for strongly additive
functions with the weights being the characteristic functions of the subsets
of N which satisfy certain sieve type conditions. On nonnegattive multi-
plicative weights α, Elboim and Gorodetsky [11, Theorem 1.1] generalized
Billingsley’s proof [2] to handle the distribution of Ω(n) weighted by those α
having constant mean values and satisfying certain growth conditions, while
Tenenbaum’s result [32, Corollary 2.5] was proved by means of character-
sitic functions and allows for general additive functions and a large class of
multiplicative weights α with the property that α(p) = O(pσ0−1) for some
constant σ0 > 0.
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The main purpose of this paper is to establish weighted versions of the
Erdős–Kac theorem by pushing the method of moments of Granville and
Soundararajan to its limit. Our work is the first to apply this method to
prove weighted Erdős–Kac theorems with general additive functions and
multiplicative weights. We obtain uniform estimates for moments of strength
comparable to that of the original estimate of Granville and Soundararajan
for ω(n). With our emphasis on the strength of the method, we have refrained
from pursuing the most general theorems at the risk of complicating our
exposition. Despite this compromise, our results have some advantages over
the results in [11, 32, 33]. Our approach is elementary and flexible, and it can
be applied to handle certain arithmetic functions of special interest which
were studied previously by different methods. Some examples are discussed
in the comment below Corollary 2.5.

Definitions and notation. We introduce some terminology and nota-
tion that will be adopted throughout this paper without further clarification.
Given any real- or complex-valued functions f(x) and g(x) with a common
domain D ⊆ R, we shall use Landau’s big-O notation f(x) = O(g(x)) and
Vinogradov’s notation f(x) ≪ g(x) interchangeably to mean that there ex-
ists an absolute constant C > 0 such that |f(x)| ≤ C|g(x)| for all x ∈ D.
Likewise, we shall use the notation f(x) ≫ g(x) interchangeably with g(x) =
O(f(x)). If f(x) = O(g(x)) and g(x) = O(f(x)) hold simultaneously, then
we adopt the shorthand notation f(x) ≍ g(x). If D contains a neighborhood
of ∞, then we write f(x) = o(g(x)) when f(x)/g(x) → 0 as x → ∞ and
f(x) ∼ g(x) when f(x)/g(x) → 1 as x → ∞. We shall occasionally make
use of the characteristic function ϵa,b of the condition a ̸= b for any a, b ∈ R.
Equivalently, ϵa,b = 1− δa,b, where δa,b is the Kronecker delta function.

Throughout, the letter p denotes a prime, and we write π(x) for the
prime counting function, namely, π(x) =

∑
p≤x 1. For any x ∈ R, we write

⌊x⌋ for the integer part of x, and ⌈x⌉ for the least integer ≥ x. For every
n ∈ N, denote by P−(n) and P+(n) the least and the greatest prime factor
of n, respectively, with the convention that P−(1) = ∞ and P+(1) = 1. We
say that n ∈ Z \ {0} is squareful if for any prime p |n one has p2 |n. Given
any prime power pν , the relation pν ∥n means that pν |n but pν+1 ∤ n. In
addition, we denote by Rn the radical of n, i.e., Rn := rad(n) =

∏
p|n p.

Finally, we write
(

m
m1,...,mk

)
:= m!

m1!···mk!
for the multinomial coefficient of

shape (m1, . . . ,mk) of size m = m1 + · · ·+mk.

2. Main results. The weights α : N → R≥0 that we shall consider in
this paper form a nice subclass M∗ of nonnegative multiplicative functions,
nice in the sense that there exist constants A0, β, σ0 > 0, ϑ0 ≥ 0, ϱ0 ∈ [0, 1)
and r ∈ (0, 1) such that
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α(pν) ≪ p(ϱ0+σ0−1)ν ,(2.1) ∑
p≤x

α(p) log p

pσ0−1
= βx+O

(
x

(log x)A0

)
,(2.2)

∑′

p

(
α(p)2

p2(r+σ0−1)
+
∑
ν≥2

α(pν)

p(r+σ0−1)ν

)
<∞,(2.3)

∑
ν≥1

να(pν)

pσ0ν
≪ (log log(p+ 1))ϑ0

p
,(2.4)

where the sum
∑′

p is over all but finitely many primes p. It is not hard to
verify that M∗ is closed under Dirichlet convolution. Despite some overlaps
between our class M∗ and the class of multiplicative functions studied by
Elboim and Gorodetsky [11], neither of them strictly contains the other. On
the one hand, the multiplicative function α defined by α(p) = 1 for all primes
p and α(pν) = pν/3 for all prime powers pν with ν ≥ 2 falls into M∗ but is not
covered by the first part of [11, Theorem 1.1]. On the other hand, (2.4) implies
the more restrictive growth condition α(p)/pσ0−1 ≪ (log log(p+1))ϑ0 , which
is not required in [11, Theorem 1.1].

The class M∗ contains many familiar multiplicative functions, including
the κ-fold divisor function dκ(n) for κ > 0, the sum-of-divisors function σλ(n)
for λ > −1, Euler’s totient function φ(n), the characteristic function µ(n)2

of squarefree numbers, and the function r2(n)/4, where µ(n) is the Möbius
function and r2(n) := #{(a, b) ∈ Z2 : n = a2 + b2}. Less obvious examples
include ρg(n), which denotes the number of zeros in Z/nZ of a nonconstant
irreducible polynomial g ∈ Z[x], and Ramanujan’s τ -function τ(n), which
may be defined as the nth Fourier coefficient of the modular discriminant.
We leave the verification of these claims to the interested reader.

Let α ∈ M∗ with parameters A0, β, σ0, ϑ0, ϱ0, r and set

S(x) = Sα(x) :=
∑
n≤x

α(n).

For any additive function f : N → R, define

A(x) = Aα,f (x) :=
∑
p≤x

α(p)
f(p)

pσ0
, B(x) = Bα,f (x) :=

∑
p≤x

α(p)
f(p)2

pσ0
.

One may think of n as a random variable defined on the sample space N∩[1, x]
with the natural probability measure induced by α, that is, Prob(n = k) =
α(k)/S(x) for every k ∈ N∩[1, x]. We shall show, by estimating the weighted
mth moment defined by

M(x;m) =Mα,f (x;m) := S(x)−1
∑
n≤x

α(n)(f(n)−A(x))m
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for every m ∈ N, that for certain additive functions f , the limiting distri-
bution of the normalization (f(n)−A(x))/

√
B(x) is standard Gaussian. To

state our results in a coherent manner, we set χm := (1 + (−1)m)/2, the
characteristic function of even integers, and

Cm :=
m!

2m/2Γ (m/2 + 1)

for m ∈ N, where Γ is the Gamma function. One quickly notes that Cm =
µm = (m − 1)!! for m even. The numbers Cm play a nonnegligible role in
the error terms of our uniform estimates for M(x;m). Our first result is the
following theorem.

Theorem 2.1. Let f : N → R be a strongly additive function with |f(p)|
≤ M for all p, where M > 0 is constant, and let α ∈ M∗ with parameters
A0, β, σ0, ϑ0, ϱ0, r. If β = 1 and 0 < h0 < (3/2)2/3 is arbitrary, and if
B(x) → ∞ as x→ ∞, then

M(x;m) = CmB(x)m/2

(
χm +O

(
Mm3/2√
B(x)

))
uniformly for all sufficiently large x and all 1 ≤ m ≤ h0(B(x)/M2)1/3. If
β ̸= 1 and if B(x)/(log log log x)2 → ∞ as x→ ∞, then

M(x;m) = CmB(x)m/2

(
χm +O

(
Mm3/2 log log log x√

B(x)

))
uniformly for all sufficiently large x and all

1 ≤ m≪ B(x)1/3/(log log log x)2/3.

The implicit constants in the error terms of both asymptotic formulas above
depend at most on the explicit and implicit constants in the hypotheses except
for M .

Remark 2.1. It may be worth pointing out that in the same way as in
Theorem 2.1, the implicit constants in the estimates appearing in the rest
of the paper depend at most on the explicit and implicit constants in the
hypotheses unless stated otherwise.

In the case where α = 1 and f = ω, we recover [17, Theorem 1] with
a slightly wider range 1 ≤ m ≤ h0(log log x)

1/3 compared to the original
range 1 ≤ m ≤ (log log x)1/3. Though Theorem 2.1 is formulated for strongly
additive functions, similar things can be said about additive functions whose
values at prime powers do not grow too rapidly and are hence not expected
to contribute very much. A simple example of such functions is Ω(n). Since
Ω(pν) = ν for all pν , one can show, by establishing a weighted version
of (1.2), that Ω(n) does not differ from its cousin ω(n) very much for most
values of n, and so they are expected to have the same distribution. More
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generally, we shall prove the following variant of Theorem 2.1 for additive
functions. For simplicity, we shall focus on a subclass of the multiplicative
functions in M∗.

Theorem 2.2. Let f : N → R be an additive function such that f(pν) ≤
Mνκ for all prime powers pν , where M > 0 and κ ≥ 0 are constant. Let
α : N → R≥0 be a multiplicative function, and suppose that there exist con-
stants A0, β, σ0 > 0, ϑ0 ≥ 0, ϱ0 ∈ [0, 1/2) and λ ∈ (0, 21−2ϱ0) such that
α(n) satisfies (2.2), (2.4), and the condition that α(pν) = O((λpϱ0+σ0−1)ν)
for all prime powers pν . If β = 1 and 0 < h0 < (3/2)2/3 is arbitrary, and if
B(x) → ∞ as x→ ∞, then

M(x;m) = CmB(x)m/2

(
χm +O

(
Mmκ+3/2√

B(x)

))
uniformly for all sufficiently large x and all m ∈ N satisfying

m ≤ h0(B(x)/M2)1/3 and m≪ B(x)1/(2κ+3).

If β ̸= 1 and if B(x)/(log log log x)2 → ∞ as x→ ∞, then we have

M(x;m) = CmB(x)m/2

(
χm +O

(
Mm3/2(log log log x+mκ)√

B(x)

))
uniformly for all sufficiently large x and all

1 ≤ m≪ min

(
B(x)1/(2κ+3),

B(x)1/3

(log log log x)2/3

)
.

The implicit constants in both asymptotic formulas above depend at most on
the explicit and implicit constants in the hypotheses except for M .

It is easy to see that if α(pν) = O((λpr0+σ0−1)ν) for all prime pow-
ers pν , where σ0 > 0, r0 ∈ [0, 1/2) and λ ∈ (0, 21−2r0) are given constants,
then conditions (2.1) and (2.3) are automatically fulfilled with any fixed
max(r0 + log2 λ, 0) ≤ ϱ0 < 1, r0 + max(1/2, log2 λ) < r < 1, and the same
parameter σ0. Indeed, we shall derive Theorem 2.2 as a corollary of Theo-
rem 2.1.

Let g ∈ Z[x] be a nonconstant irreducible polynomial, and recall that for
every n ∈ N, ρg(n) denotes the number of zeros of g in Z/nZ. More generally,
if g ∈ Q[x] is a nonconstant irreducible polynomial, we may extend the
definition above by setting ρg(n) = 0 if gcd(n, cg) > 1, where cg ∈ N is the
least positive integer such that cgg(x) ∈ Z[x], and insisting that ρg(n) be the
number of zeros of g(x) (or equivalently, cgg(x)) in Z/nZ when gcd(n, cg)=1.
Extended this way with the convention that ρg(1) = 1, the function ρg(n)
remains multiplicative. By [20, Lemma 1], ρg is bounded on prime powers
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and satisfies ∑
p≤x

ρg(p)

p
= log log x+Mρg +O

(
1

log x

)
.

Given a strongly additive function f : N → R, we define

Af,g(x) :=
∑
p≤x

ρg(p)
f(p)

p
, Bf,g(x) :=

∑
p≤x

ρg(p)
f(p)2

p
.

For simplicity, suppose that g(N) ⊆ N. In the case g ∈ Z[x], Halberstam
[19, Theorem 3] showed that if Bf,g(x) → ∞ as x → ∞, and if f(p) =

o(
√
Bf,g(p)) (1), then given m ∈ N,

1

x

∑
n≤x

(f(g(n))−Af,g(x))
m = (µm + o(1))Bf,g(x)

m/2.

Under the stronger condition f(p) = O(1), Theorem 2.1 leads to a weighted
version of this result in the case g(n) = n. The remaining cases are captured
by the following theorem.

Theorem 2.3. Let f : N → R be a strongly additive function with |f(p)|
≤ M for all p, where M > 0 is constant, and let g ∈ Q[x] be a nonconstant
irreducible polynomial such that g(0) ̸= 0 and g(N) ⊆ N. Let α ∈ M∗ with
parameters A0, β, σ0, ϑ0, ϱ0, r, and fix 0 < h0 < (3/2)2/3 and h′0 > 0. For
any q ∈ N and a ∈ Z coprime to q, define

∆α(x; q, a) :=
∑
n≤x

n≡a (mod q)

α(n)− 1

φ(q)

∑
n≤x

gcd(n,q)=1

α(n).

If there exist a constant ϵ0 > 0 and a function δ(x) ∈ (0, 1] with δ(x)2Bf,g(x)
→ ∞ as x→ ∞ such that

(2.5)
∑

q:ω(q)≤m

P+(q)≤xδ(x)/m

µ(q)2
∑

a∈Z∗
g (q)

|∆α(x; q, a)|

≪ S(x) exp(−(log log x)1/3+ϵ0)

uniformly for all sufficiently large x and all

(2.6) 1 ≤ m ≤ min(h0(Bf,g(x)/M
2)1/3, h′0(δ(x)

2Bf,g(x)/M
2)1/3),

(1) Halberstam [19] wrote that for g(x) = x this pair of conditions contain the con-
dition that f(p) = o((log p)ϵ) for every given ϵ > 0. However, this claim is incorrect. In
fact, a simple counterexample may be constructed as follows. Let P be an arbitrary infi-
nite subset of odd primes such that

∑
p∈P 1/p < ∞, and put P(x) := P ∩ [3, x]. Define

f(p) =
√
log log p for p ∈ P and f(p) = 1 for p /∈ P. From partial summation it follows

that
∑

p∈P(x) f(p)
2/p = o(log log x). Then one sees readily that f(p) = o((log p)ϵ) for any

given ϵ > 0, while f(p) ∼
√

B(p) for large p ∈ P.
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where Z∗
g (q) := {n ∈ (Z/qZ)× : g(n) ≡ 0 (mod q)} is the zero locus of g in

(Z/qZ)×, then

S(x)−1
∑
n≤x

α(n)(f(g(n))−Af,g(x))
m

= CmBf,g(x)
m/2

(
χm +O

(
Mm3/2

δ(x)
√
Bf,g(x)

))
uniformly for all sufficiently large x and all m ∈ N in the same range (2.6),
where the implicit constant depends at most on the explicit and implicit con-
stants in the hypotheses except for M .

Theorem 2.3 is applicable to a large class of nonnegative multiplication
functions α(n), including dk(n) for k ∈ N and r2(n)/4 (see [4, 26]). Despite
the great generality of (2.5), it is oftentimes more convenient to work with
the stronger variant

(2.7)
∑

q≤xδ(x)

ω(q)≪(δ(x)2 log log x)1/3

µ(q)2ρg(q) max
a∈(Z/qZ)×

|∆α(x; q, a)|

≪ S(x) exp(−(log log x)1/3+ϵ0).

This condition may be viewed as an inequality of the Bombieri–Vinogradov
type, which ensures that the values of α(n) are well distributed as n varies
over the reduced residue classes a (mod q) for most values of q and a. In view
of [17, Proposition 4], such a condition arises naturally from a sieving process
for the sequence {g(n)}n≥1. For this process to work, we need information
about the average size of α(n) subject to the constraint d | g(n) for smooth
squarefree d ∈ N ∩ [1, xδ]. If d is also free of small prime factors up to some
constant depending on g, then this constraint amounts to the congruences
n ≡ a (mod d) for a ∈ Z∗

g (d). So, (2.7) reduces the sieving of {g(n)}n≥1 to
that of N.

We shall only sketch the proof of Theorem 2.3, since it is similar to, and
in fact much easier than, that of Theorem 2.1. The argument used in the
proof may also be modified to study the joint distribution of f(n+ h1) and
f(n+ h2) with any fixed integers h1 ̸= h2.

It is not hard to see that the condition f(p) = O(1) in Theorem 2.1
can be relaxed, especially when we do not pursue uniformity in m in the
asymptotics for the mth moment. For instance, in the case α = 1 Delange
and Halberstam showed [8, Theorem 1] that if f : N → R is a strongly
additive function such that B(x) → ∞ as x→ ∞, f(p) = O(

√
B(p)) for all

primes p, and

(2.8)
∑
p≤x

|f(p)|>ϵ
√

B(x)

f(p)2

p
= o(B(x))
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for any given ϵ > 0, then
1

x

∑
n≤x

(f(n)−A(x))m = (µm + o(1))B(x)m/2

for every fixed m ∈ N. The implication of this result on the distribution of
f is slightly weaker than the Kubilius–Shapiro theorem [29, Theorem A] in
that the latter asserts that the distribution of an additive function f : N → R
with an unbounded variance B(x) which satisfies (2.8) for every given ϵ > 0
is necessarily Gaussian with mean A(x) and variance B(x). On the other
hand, Delange and Halberstam noted that their result no longer holds if one
removes the assumption f(p) = O(

√
B(p)), which incidentally exposes the

limitation of the method of moments compared to the method developed by
Erdős and Kac. Regardless, it will be clear in the sequel that the proof of
Theorem 2.1 makes it possible for us to obtain the following natural extension
of the result of Delange and Halberstam.

Theorem 2.4. Let f : N → R be a strongly additive function, and let
α ∈ M∗ with parameters A0, β, σ0, ϑ0, ϱ0, r. Define

B∗(x) :=

{
B(x) if β = 1,

B(x)/(log log log x)2 if β ̸= 1,

and suppose B∗(x) → ∞ as x → ∞. If there exists a constant K > 0 such
that f(n) = o(

√
B(x)) for all squarefree n ∈ N ∩ [1, x] composed of prime

factors p with |f(p)| > K
√
B∗(x), and if∑

p≤x

|f(p)|>ϵ
√

B∗(x)

α(p)
f(p)2

pσ0
= o(B∗(x))

for any given ϵ > 0, then M(x;m) = (µm + o(1))B(x)m/2 for every fixed
m ∈ N.

The proof of Theorem 2.4, which we shall only outline, is based on the
proofs of Theorem 2.1 and [8, Theorem 1]. We shall also obtain as a corollary
the following analogue of the Kubilius–Shapiro theorem [29, Theorem C].

Corollary 2.5. Under the notation and hypotheses of Theorem 2.4,

lim
x→∞

S(x)−1
∑
n≤x

f(n)≤A(x)+V
√

B(x)

α(n) = Φ(V )

for any given V ∈ R. The same is true if f is merely additive.

It is clear that Theorem 2.4 implies Corollary 2.5 when f is strongly
additive. To handle the general case where f is merely additive, we shall
establish a weighted version of [29, Theorem B] which shows that when it
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comes to the distribution problem, there is no essential difference between
strongly additive functions and general additive functions, and thus the dis-
tribution of an additive function f is determined solely by its values at
primes.

Corollary 2.5 has many interesting applications. For instance, it im-
plies at once that if h : N → R is any completely additive function, i.e.,
h(mn) = h(m) + h(n) for all m,n ∈ N, and if k > 1 is a positive inte-
ger, then the distribution of h(dk(n)) weighted by α(n) is Gaussian with
mean h(k)β log log x and variance h(k)2β log log x, provided h(k) ̸= 0. In
[12] Elliott proved a weighted Erdős–Kac theorem concerning Ramanujan’s
τ -function. In Remark 9.1 we describe how his result may be derived from
Corollary 2.5. Analogues on elliptic holomorphic newforms of weight at
least 2 can be obtained in the same way. In a similar fashion, one can also
show that if the weight α in Corollary 2.5 satisfies the additional condi-
tion α(p) ∼ βpσ0−1 for all but a subset E of primes p, where #(E ∩ [2, x])
= o(x(log log x)2−ϑ0/(log x)3) as x → ∞, then the distribution of Ω(φ(n))
weighted by α(n) is Gaussian with mean β(log log x)2/2 and variance
β(log log x)3/3, generalizing an old result of Erdős and Pomerance [16, The-
orem 3.1] in an easy manner.

Remark 2.2. The condition that f(p) = o((log p)ϵ) for any given ϵ > 0,
mentioned by Halberstam [19], does not imply (2.8) in general. To see this,
assume for the moment that there exists an infinite subset P of primes such
that

(2.9) sP(x) :=
∑

p∈P∩[17,x]

1

p
=

log log x

log log log x
+ c+ o(1)

for sufficiently large x, where c ∈ R is some constant. Next, define f(p) =
(log p)1/(2 log log log p) for p ∈ P and f(p) = 1 for p /∈ P. Clearly, f(p) =
o((log p)ϵ) for any given ϵ > 0. It is easily seen by partial summation that∑
p∈P∩[17,x]

f(p)2

p
=

x�

17−

(log t)1/log log log t dsP(t) = (1 + o(1))(log x)1/log log log x,

which implies that

B(x) =
∑

p∈P∩[17,x]

f(p)2

p
+O(log log x) = (1 + o(1))(log x)1/log log log x.

Let y = x1/log log x and ϵ = 1/2. Since

log log y = log log x− log log log x,
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log log log y =

(
1 +O

(
1

log log x

))
log log log x,

we have

(log y)1/log log log y = exp

(
log log x

log log log x
− 1 +O

(
1

log log log x

))
.

It follows that

f(p)2 > (log y)1/log log log y >
1

3
(log x)1/log log log x > ϵ2B(x)

for p ∈ P ∩ (y, x] when x is sufficiently large. Hence,∑
p≤x

|f(p)|>ϵ
√

B(x)

f(p)2

p
≥

∑
p∈P∩(y,x]

f(p)2

p
>

1

2
(log x)1/log log log x >

1

3
B(x).

It remains to construct a set P with the desired property (2.9). The fol-
lowing inductive approach was suggested by Prof. Pomerance. Note first
that

∑
p≤x 1/p = log log x + O(1) grows slightly faster than our target

u(x) := log log x/log log log x, according to Mertens’ second theorem [22,
Theorem 427]. Moreover, if p < p′ are large consecutive primes, then
u(p′)− u(p) = o(1/log p), by Bertrand’s postulate. Let 17 be the first prime
in P. Suppose that we have already selected for P the primes up to q, where
q is prime. We put the next prime q′ in P if sP(q) < u(q) and leave it out
otherwise. Then the running sum sP(x) changes by at most 1/q as x moves
from q to q′, while the target u(x) changes by at most o(1/log q) as x moves
from q to q′. Thus, the difference sP(x)−u(x) can be kept within o(1/log x).
In particular, (2.9) holds for P with c = 0.

Overview of the proof of Theorem 2.1. Before embarking on the
proofs of our results, we briefly describe the main steps in the proof of
Theorem 2.1. The starting point is an approximation to moments used by
Granville, Soundararajan, Khan, Milinovich and Subedi. Though the under-
lying idea is the same, we need a more complicated version of this approxi-
mation (see Lemma 4.1) due to the more general nature of our multiplicative
weights α. To utilize it, we first need to develop an asymptotic formula for
the mean value of α(n) with n ≤ x restricted to the multiples of a squarefree
integer a ∈ N∩ [1, x] (see Lemma 3.3). An important feature of this formula
is that it holds uniformly for all squarefree integers a ∈ N ∩ [1, x], which is
key to both applying the moment approximation and making the moment
estimates uniform. This formula will serve as a substitute for the one on
dk developed by Khan, Milinovich and Subedi. Unlike their proof, which is
based on Perron’s formula and the complete submultiplicativity of dk, our
proof uses the mean value estimate for α supplied by [5, Theorem 2.1] and
is completely elementary. It is carried out in the next section.
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After applying the moment approximation, we find that the estimation
of the main contribution can be worked out as in [17, 24]. It is the esti-
mation of the error terms that is more involved in our case. In particular,
the estimation of the error term in the moment approximation provided by
Lemma 4.1 requires separate treatments of β = 1 and β ̸= 1. Moreover,
since the error term in our asymptotic formula for the mean value of α(n)
over a |n supplied by Lemma 3.3 is weaker than what one can obtain for
the special weight dk(n) by complex-analytic approaches, we need to handle
the case β ∈ (0, 1) with some special care and make a careful selection of
parameters accordingly in order to minimize the error terms. With these
new technicalities taken care of, we obtain the desired uniform estimates for
moments stated in Theorem 2.1.

3. Mean values of multiplicative functions. Without loss of gener-
ality, we may assume A0 ∈ (0, 1). In addition, we shall also make use of the
asymptotic formula

(3.1)
∑
p≤x

α(p)

pσ0
= β log log x+Mα +O((log x)−A0)

with some constantMα ∈ R, which follows immediately from (2.2) via partial
summation. In view of our assumption that f(p) = O(1), this formula implies
trivially that B(x) ≪ log log x. Moreover, if we define, for every prime p,

ψ0(p) :=
∑
ν≥2

α(pν)

pσ0ν
,

then we infer from (2.1), (2.3) and (2.4) that

ψ0(p) ≪
(log log(p+ 1))ϑ0

p

and
∑

p ψ0(p) <∞.

Lemma 3.1. Let α : N → R≥0 be a multiplicative function satisfying (2.1)
and (2.4) with some σ0, ϑ0 > 0 and ϱ0 ∈ [0, 1). Fix h ∈ R, ϵ0 ∈ (0, 1) and
c0 ∈ [1, ϵ−1

0 ), and define

Iα,h(x; a) :=
∑
q≤x
Rq=a

α(q)

qσ0

(
log

3x

q

)h

,

where a ∈ N ∩ [1, x] is squarefree. Then there exists a constant δ0 > 0 such
that uniformly for all sufficiently large x, any δ ∈ [δ0 log log x/log x, 1], and
any squarefree a ∈ N ∩ [1, x] with ω(a) ≤ (1− ϱ0)ϵ0δ

−1, we have
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Iα,h(x; a)

=

(
λ̃α(a) +O

(
2O(ω(a))

log x

(
1

xc0δω(a)
+
ϵh,0L(a) logP

+(a)

a

)))
(log x)h,

where

λ̃α(a) :=
∏
p|a

∞∑
ν=1

α(pν)

pσ0ν
, L(a) :=

∏
p|a

(log log(p+ 1))ϑ0 .

Proof. Let δ ∈ (0, 1] and fix c1 ∈ (c0, ϵ
−1
0 ). Put δ1 := (1 − ϱ0)

−1c1δ and
y := xkδ1 . For any squarefree a = p1 · · · pk ∈ N∩ [1, x] with p1 < · · · < pk ≤ x
and k ≤ (1− ϱ0)ϵ0δ

−1, we have kδ1 ≤ c1ϵ0 < 1 and

Iα,h(x; a) =
∑

p
ν1
1 ···pνkk ≤x
ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

(
log

3x

pν11 · · · pνkk

)h

.

On the one hand,

∑
p
ν1
1 ···pνkk ≤y
ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

(
log

3x

pν11 · · · pνkk

)h

=
∑

p
ν1
1 ···pνkk ≤y
ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

(log 3x)h
(
1 +O

(
ϵh,0

log 3x

k∑
i=1

νi log pi

))

=
∑

p
ν1
1 ···pνkk ≤y
ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

(log x)h +O

(
2O(k)ϵh,0L(a) log pk

a
(log x)h−1

)
,

by (2.4). From (2.1) it follows that∑
p
ν1
1 ···pνkk ≤y
ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

= λ̃α(a) +O

(
2O(k)

∑
p
ν1
1 ···pνkk >y
ν1,...,νk≥1

1

p
(1−ϱ0)ν1
1 · · · p(1−ϱ0)νk

k

)
.

The sum in the error term above may be split into two sums according
as pν22 · · · pνkk ≤ y or pν22 · · · pνkk > y. In the first sum we must have pν11 >

y/(pν22 · · · pνkk ). Thus summing over ν1 and then over ν2, . . . , νk, we see that
the first sum is
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≪ 1

y1−ϱ0

∑
p
ν2
2 ···pνkk ≤y
ν2,...,νk≥1

1 ≤ 2O(k)(log x)k−1

xc1kδ(log p2) · · · (log pk)
.

The second sum is simply∑
p
ν2
2 ···pνkk >y
ν2,...,νk≥1

1

p
(1−ϱ0)ν2
2 · · · p(1−ϱ0)νk

k

∑
ν1≥1

1

p
(1−ϱ0)ν1
1

≪
∑

p
ν2
2 ···pνkk >y
ν2,...,νk≥1

1

p
(1−ϱ0)ν2
2 · · · p(1−ϱ0)νk

k

.

It follows that∑
p
ν1
1 ···pνkk >y
ν1,...,νk≥1

1

p
(1−ϱ0)ν1
1 · · · p(1−ϱ0)νk

k

≪
∑

p
ν2
2 ···pνkk >y
ν2,...,νk≥1

1

p
(1−ϱ0)ν2
2 · · · p(1−ϱ0)νk

k

+
2O(k)(log x)k−1

xc1kδ(log p2) · · · (log pk)
.

Repeating this argument, we obtain∑
p
ν1
1 ···pνkk >y
ν1,...,νk≥1

1

p
(1−ϱ0)ν1
1 · · · p(1−ϱ0)νk

k

≤ 2O(k)(log x)k−1

xc1kδ(log p2) · · · (log pk)
,

from which we deduce

(3.2)
∑

p
ν1
1 ···pνkk ≤y
ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

= λ̃α(a) +O

(
2O(k)(log x)k−1

xc1kδ(log p2) · · · (log pk)

)
.

On the other hand,∑
x1<pν≤x2

α(pν)

pσ0ν

(
log

3x2
pν

)h

≪
∑

logp x1<ν≤logp x2

ν∈Z

1

p(1−ϱ0)ν

(
log

3x2
pν

)h

= −
logp x2�

logp x1

(
log

3x2
pt

)h

d

( ∑
t<ν≤logp x2

ν∈Z

1

p(1−ϱ0)t

)

uniformly for all primes p and all 0 < x1 ≤ x2. Using integration by parts,
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we see that the integral above is equal to

−(log(3x2/x1))
h

∑
logp x1<ν≤logp x2

ν∈Z

1

p(1−ϱ0)ν

−
logp x2�

logp x1

( ∑
t<ν≤logp x2

ν∈Z

1

p(1−ϱ0)t

)
d

(
log

3x2
pt

)h

.

Since ∑
t<ν≤logp x2

ν∈Z

1

p(1−ϱ0)t
<

1

p(1−ϱ0)(⌊t⌋+1)
· p1−ϱ0

p1−ϱ0 − 1
≪ 1

p(1−ϱ0)t
,

we have

(log(3x2/x1))
h

∑
logp x1<ν≤logp x2

ν∈Z

1

p(1−ϱ0)ν
≪ (log(3x2/x1))

h

x1−ϱ0
1

and

logp x2�

logp x1

( ∑
t<ν≤logp x2

ν∈Z

1

p(1−ϱ0)t

)
d

(
log

3x2
pt

)h

≪ ϵh,0 log p

logp x2�

logp x1

1

p(1−ϱ0)t

(
log

3x2
pt

)h−1

dt

=
ϵh,0

(3x2)1−ϱ0

log(3x2/x1)�

log 3

th−1e(1−ϱ0)t dt

≪
ϵh,0

(3x2)1−ϱ0
(log(3x2/x1))

h−1

(
3x2
x1

)1−ϱ0

=
ϵh,0(log(3x2/x1))

h−1

x1−ϱ0
1

.

Hence,

(3.3)
∑

x1<pν≤x2

α(pν)

pσ0ν

(
log

3x2
pν

)h

≪ (log(3x2/x1))
h

x1−ϱ0
1

uniformly for all primes p and all 0 < x1 ≤ x2. This inequality implies
immediately
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∑
y<p

ν1
1 ···pνkk ≤x

ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

(
log

3x

pν11 · · · pνkk

)h

≤ 2O(k)(log x)h

y1−ϱ0

∑
p
ν2
2 ···pνkk ≤x
ν2,...,νk≥1

1

≤ 2O(k)(log x)k+h−1

xc1kδ(log p2) · · · (log pk)
.

Lemma 3.1 now follows upon combining the above with (3.2) and taking
δ0 = 1/(c1 − c0) with the range δ ≥ δ0 log log x/log x in mind.

Let α be a multiplicative function as in Theorem 2.1 with A0 ∈ (0, 1).
Suppose first that (2.3) holds with the restricted sum

∑′
p replaced by the

full sum
∑

p. For σ0 = 1 de la Bretèche and Tenenbaum [5, Theorem 2.1]
showed∑
n≤x

α(n) =
1

Γ (β)

∏
p

(
1− 1

p

)β ∞∑
ν=0

α(pν)

pν
x(log x)β−1

(
1 +O

(
1

(log x)A0

))
,

where the implicit constant depends at most on the explicit and implicit
constants in the hypotheses. For the general case where σ0 > 0 is arbitrary,
it is easy to show, by applying the above to α(n)/nσ0−1 and employing
partial summation as in [11, proof of Corollary 3.2], that

(3.4) S(x) =
∑
n≤x

α(n) = λαx
σ0(log x)β−1

(
1 +O

(
1

(log x)A0

))
,

where

(3.5) λα :=
1

σ0Γ (β)

∏
p

(
1− 1

p

)β ∞∑
ν=0

α(pν)

pσ0ν
.

Suppose now that (2.3) holds with the restricted sum
∑′

p being the sum∑
p>Q0

, where Q0 ≥ 1 is some constant. Let P0 :=
∏

p≤Q0
p and let 1P0(n) be

the indicator function of the set {n ∈ N : gcd(n, P0) = 1}. Then α(n)1P0(n)
is a nonnegative multiplicative function satisfying (2.1)–(2.4) with the sum∑′

p in (2.3) replaced by the full sum
∑

p. In particular, (3.4) is applicable
to α(n)1P0(n). Thus, we obtain

(3.6)
∑
n≤x

gcd(n,P0)=1

α(n) = λα(P0)x
σ0(log 3x)β−1

(
1 +O

(
1

(log 3x)A0

))
,

where

λα(P0) :=
1

σ0Γ (β)

∏
p≤Q0

(
1− 1

p

)β

·
∏
p>Q0

(
1− 1

p

)β ∞∑
ν=0

α(pν)

pσ0ν
.
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Examining the proof of Lemma 3.1, we find that for every given h ∈ R,∑
q≤x
Rq |P0

α(q)

qσ0

(
log

3x

q

)h

=
∏
p≤Q0

∞∑
ν=0

α(pν)

pσ0ν
(log x)h

(
1 +O

(
1

log x

))

for all sufficiently large x. Combining this with (3.6) gives

S(x) =
∑
q≤x
Rq |P0

α(q)
∑

n′≤x/q
gcd(n′,P0)=1

α(n′) = λαx
σ0(log x)β−1

(
1 +O

(
1

(log x)A0

))
,

which is the same as (3.4).
For our applications, we will need an asymptotic formula for

S(x; a) = Sα(x; a) :=
∑
n≤x

gcd(n,a)=1

α(n)

uniform in a ∈ N ∩ [1, x]. One may be tempted to apply (3.4) to the func-
tion α(n)1a(n), where 1a(n) is the indicator function of the set {n ∈ N :
gcd(n, a) = 1}. However, it is not immediately clear whether the implied
constant in the error term obtained via this naive approach is independent
of a ∈ N ∩ [1, x]. Fortunately, the following lemma provides the desired esti-
mate for S(x; a) under the hypotheses (2.1)–(2.4).

Lemma 3.2. For any α ∈ M∗ with parameters A0, β, σ0, ϑ0, ϱ0, r, we
have

S(x; a) = xσ0(log x)β−1

(
λα(a) +O

(
1

(log x)A0

))
uniformly for all sufficiently large x and all a ∈ N ∩ [1, x], where

λα(a) :=
1

σ0Γ (β)

∏
p|a

(
1− 1

p

)β

·
∏
p∤a

(
1− 1

p

)β ∞∑
ν=0

α(pν)

pσ0ν
,

The implicit constant depends at most on the explicit and implicit constants
in the hypotheses.

Proof. Let a ∈ N ∩ [1, x]. For simplicity of notation, we write
∑a for

sums in which the indices take values coprime to a. As we have demonstrated
above, there is no loss of generality in assuming that σ0 = 1 and that (2.3)
holds with the restricted sum

∑′
p replaced by the full sum

∑
p. Note that

0 < λα(a) = λα
∏
p|a

( ∞∑
ν=0

α(pν)

pν

)−1

≤ λα.
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To estimate S(x; a), we start by connecting it with

T (x; a) = Tα(x; a) :=
∑a

n≤x

α(n)

n
.

It is clear from (3.4) that S(x; a) ≤ S(x; 1) ≪ x(log x)β−1 and T (x; a) ≤
T (x; 1) ≪ (log x)β . Moreover, it is shown in [5, proof of Theorem 2.1] that

(3.7) T (x; 1) =

(
1 +O

(
1

log x

))
λα
β
(log x)β.

Following that proof, we find

(3.8) S(x; a) log x

=
∑a

n≤x

α(n) log n+
∑a

n≤x

α(n) log
x

n

=
∑a

k≤x

α(k)
∑a

pν≤x/k
p∤k

α(pν) log pν +

x�

1−

S(t; a)

t
dt

=
∑a

k≤x

α(k)
∑a

p≤x/k

α(p) log p+O
(∑
k≤x

α(k)
∑

p≤x/k
p|k

α(p) log p
)

+O
(∑
k≤x

α(k)
∑

pν≤x/k
ν≥2

α(pν) log pν
)
+O(x(log x)β−1)

= βxT (x, a)−
∑a

k≤x

α(k)
∑

p≤x/k
p|a

α(p) log p

+O

(
x
∑
k≤x

α(k)

k(log(3x/k))A0

)
+O(x(log x)β−1).

By partial summation we have∑
k≤x

α(k)

k(log(3x/k))A0
=

S(x)

x(log 3)A0
+

x�

1−

log(3x/t)−A0

t2(log(3x/t))A0+1
S(t) dt(3.9)

≪ (log x)β−1 +

x�

1

(log 3t)β−1

t(log(3x/t))A0
dt

= (log x)β−1 +

log x�

0

(log 3 + t)β−1

(log 3x− t)A0
dt
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≪ (log x)β−1 +
1

(log x)A0

(log x)/2�

0

(log 3 + t)β−1 dt

+ (log x)β−1
log x�

(log x)/2

1

(log 3x− t)A0
dt

≪ (log x)β−A0 .

Let x1 := x/(log x)2. For k ≤ x1 we see that∑
p≤x/k
p|a

α(p) log p≪ (log log x)ϑ0 log a≪ x

k(log(x/k))A0
,

so that

(3.10)
∑a

k≤x1

α(k)
∑

p≤x/k
p|a

α(p) log p≪ x
∑
k≤x

α(k)

k(log(3x/k))A0
≪ x(log x)β−A0 .

On the other hand, by (2.2) we have

(3.11)
∑a

x1<k≤x

α(k)
∑

p≤x/k
p|a

α(p) log p

≪ x
∑

x1<k≤x

α(k)

k
≪ x

(
(log x)β − (log x1)

β +O((log x)β−1)
)

≪ x(log x)β−1 log log x,

where we have used (3.7) to estimate the sum over k and the mean value
theorem to get

(log x)β − (log x1)
β = βξβ−1 log

x

x1
≪ (log x)β−1 log log x

for some ξ ∈ (log x1, log x). Combining (3.10) with (3.11), we obtain∑a

k≤x

α(k)
∑

p≤x/k
p|a

α(p) log p≪ x(log x)β−A0 .

Inserting this and (3.9) into (3.8) yields

(3.12) S(x; a) =
βx

log x
T (x; a) +O

(
x(log x)β−1−A0

)
uniformly for all sufficiently large x and all a ∈ N ∩ [1, x].

It remains to estimate T (x; a). To this end, we repeat the argument above
with α(n) replaced by α(n)/n. From (2.2) it follows that
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(3.13)
∑
p≤x

α(p)

p
log p = β log x+O

(
(log x)1−A0

)
.

Thus,

T (x; a) log x =
∑a

n≤x

α(n)

n
log n+

∑a

n≤x

α(n)

n
log

x

n

=
∑a

k≤x

α(k)

k

∑a

pν≤x/k
p∤k

α(pν)

pν
log pν + U(x; a)

=
∑a

k≤x

α(k)

k

∑a

p≤x/k

α(p)

p
log p+O

(∑a

k≤x

α(k)

k

∑
p≤x/k
p|k

α(p)

p
log p

)

+O

(∑a

k≤x

α(k)

k

∑
pν≤x/k
ν≥2

α(pν)

pν
log pν

)
+ U(x; a)

= (β + 1)U(x; a)−
∑a

k≤x

α(k)

k

∑
p≤x/k
p|a

α(p)

p
log p

+O
(
(log x)1−A0T (x; a)

)
,

where

(3.14) U(x; a) :=
∑a

n≤x

α(n)

n
log

x

n
=

x�

1−

T (t; a)

t
dt.

In view of (3.13), we have∑
p≤x/k
p|a

α(p)

p
log p ≤

∑
p≤(log x)2

α(p)

p
log p+

∑
(log x)2<p≤x

p|a

α(p)

p
log p

≪ log log x+ (log log x)ϑ0
∑

(log x)2<p≤x
p|a

log p

p

≪ log log x+ (log log x)ϑ0ω(a)
log log x

(log x)2
≪ log log x,

so that ∑a

k≤x

α(k)

k

∑
p≤x/k
p|a

α(p)

p
log p≪ (log log x)T (x; a).
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It follows that

T (x; a) log x = (β + 1)U(x; a) +O
(
(log x)1−A0T (x; a)

)
.

Hence, there exists a function ϵ(x; a) such that ϵ(x; a) = O((log x)−A0) and

(3.15) T (x; a) =
1

1− ϵ(x; a)
· β + 1

log x
U(x; a)

uniformly for all sufficiently large x and all a ∈ N ∩ [1, x].
Finally, we estimate U(x; a) and T (x; a) by following [30, proof of Theo-

rem A]. For y ≥ 2 and a ∈ N ∩ [1, y], let

V (y; a) := log

(
β + 1

(log y)β+1
U(y; a)

)
.

In light of (3.14) and (3.15), we have

d

dy
V (y; a) = − β + 1

y log y
+

1

U(y; a)
· d
dy
U(y; a)

= − β + 1

y log y
+

T (y; a)

U(y; a)y
=

β + 1

y log y
· ϵ(y; a)

1− ϵ(y; a)
≪ 1

y(log y)A0+1

uniformly for all sufficiently large y and all a ∈ N∩ [1, y], which implies that

Va :=

∞�

2

d

dy
V (y; a) dy <∞.

Since

V (x; a)− V (2; a) = Va −
∞�

x

d

dy
V (y; a) dy = Va +O((log x)−A0)

uniformly for all sufficiently large x and all a ∈ N ∩ [1, x], it follows that

β + 1

(log x)β+1
U(x; a) = exp(V (x; a)) = exp(Va + V (2; a))

(
1 +O((log x)−A0)

)
.

Combining this estimate with (3.15), we infer that

(3.16) T (x; a) = exp(Va + V (2; a))(log x)β
(
1 +O((log x)−A0)

)
uniformly for all sufficiently large x and all a ∈ N ∩ [1, x]. The leading
coefficient can be made explicit by arguing as in [30, proof of Theorem A].
Alternatively, we can also take advantage of (3.6). Fixing a ∈ N, we deduce
by (3.6) with σ0 = 1 that

T (x; a) =
λα(a)

β
(log x)β

(
1 +O((log x)−A0)

)
for all sufficiently large x. Comparing this with (3.16) shows exp(Va+V (2; a))
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= λα(a)/β. Carrying this back into (3.16), we obtain

T (x; a) =
λα(a)

β
(log x)β

(
1 +O((log x)−A0)

)
uniformly for all sufficiently large x and all a ∈ N∩ [1, x]. Inserting the above
into (3.12) completes the proof of Lemma 3.2.

The next result, which is key to the computation of moments, is a direct
corollary of Lemmas 3.1 and 3.2.

Lemma 3.3. Fix ϵ0 ∈ (0, 1), and let α ∈ M∗ with parameters A0, β, σ0,
ϑ0, ϱ0, r. Then there exist constants δ0 > 0 and Q0 ≥ 2 such that, uniformly
for all sufficiently large x, any δ ∈ [δ0 log log x/log x, 1], and any squarefree
a ∈ N ∩ [1, x] with ω(a) ≤ (1 − ρ0)ϵ0δ

−1, P−(a) > Q0 and P+(a) ≤ xδ, we
have∑
n≤x
a|n

α(n) = λα

(
F (σ0, a)

+O

(
2O(ω(a))L(a)

a

(
1

(log x)A0
+
ϵβ,1 logP

+(a)

log x

)))
xσ0(log x)β−1,

where L(a) is defined as in Lemma 3.1,

F (σ0, a) :=
∏
p|a

(
1−

( ∞∑
ν=0

α(pν)p−σ0ν
)−1)

,

and λα is defined by (3.5).

Proof. Suppose that δ0 > 0 is a constant for which Lemma 3.1 holds
when c0 = 1 and h ∈ {β − 1, β − 1−A0}. Let Q0 ≥ 2 be such that

∞∑
ν=1

α(pν)

pσ0ν
≤ 1

2

for all p > Q0. Then

F (σ0, p) =

∞∑
ν=1

α(pν)

pσ0ν
+O

(( ∞∑
ν=1

α(pν)

pσ0ν

)2)
(3.17)

=
α(p)

pσ0
+O

(
ψ0(p) +

α(p)2

p2σ0

)
for all p > Q0. For any squarefree integer a ∈ [1, x] with ω(a) ≤ (1−ϱ0)ϵ0δ−1,
P−(a) > Q0 and P+(a) ≤ xδ, by Lemma 3.2 we have

(3.18)
∑
n≤x

gcd(n,a)=1

α(n) = xσ0(log 3x)β−1

(
λα(a) +O

(
1

(log 3x)A0

))
.
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Note that ∑
n≤x
a|n

α(n) =
∑
q≤x
Rq=a

α(q)
∑

n′≤x/q
gcd(n′,a)=1

α(n′).

By (3.18), the main term of the inner sum contributes

λα(a)x
σ0

∑
q≤x
Rq=a

α(q)

(
log

3x

q

)β−1

,

which, by Lemma 3.1, is equal to

λα(a)x
σ0

(
λ̃α(a) +O

(
2O(ω(a))

log x

(
1

xδω(a)
+
ϵβ,1L(a) logP

+(a)

a

)))
(log x)β−1

= λα

(
F (σ0, a) +O

(
2O(ω(a))

log x

(
1

a
+
ϵβ,1L(a) logP

+(a)

a

)))
xσ0(log x)β−1,

since a ≤ xδω(a). Analogously, the contribution from the error term of the
inner sum is

≪ λα

(
F (σ0, a) +

2O(ω(a))L(a) logP+(a)

a log x

)
xσ0(log x)β−1−A0

≪ λα2
O(ω(a))L(a)

a
xσ0(log x)β−1−A0 ,

where we have used the estimate F (σ0, a) ≪ 2O(ω(a))L(a)/a, which follows
directly from (2.4) and (3.17). Combining these estimates completes the
proof of Lemma 3.3.

Remark 3.1. We point out that the lower bound Q0 for ω(a) in the
lemma above is by and large an artificial thing, whose value is insignificant
for our applications. However, we need it because (3.17) may not hold for
small primes. As we shall see later, having such a lower bound also frees us
from dealing with minor contributions from small primes.

4. Computing moments. By rescaling the strongly additive function f
in Theorem 2.1, we may assume, without loss of generality, that |f(p)| ≤ 1
for all primes p. Note that 0 ≤ F (σ0, p) < 1 for all primes p. For every p we
define fp : N → R by

fp(n) :=

{
f(p)(1− F (σ0, p)) if p |n,
−f(p)F (σ0, p) otherwise.
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Given any q ∈ N we may also extend fp via complete multiplicativity by
setting

fq(n) :=
∏
pν∥q

fp(n)
ν .

It is clear that |fq(n)| ≤ 1. The following result provides an approximation
of the moments of f in terms of those of fp.

Lemma 4.1. Let α ∈ M∗ with parameters A0, β, σ0, ϑ0, ϱ0, r, and let
f : N → R be a strongly additive function with |f(p)| ≤ 1 for all p. Then
there exists a constant Q0 ≥ 2 such that∑

n≤y

α(n)(f(n)−A(x))m =
∑
n≤y

α(n)
( ∑
Q0<p≤z

fp(n)
)m

+O(E(y, z, w;m))

uniformly for all sufficiently large x ≥ z, any y ≥ 1, and all m ∈ N, where

E(y, z, w;m)

:=
∑

a+b+c=m
0≤a<m
b,c≥0

(
m

a, b, c

)
2O(m−a)(log(v+2))c

∑
n≤y

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣aω(n; z, w)b,

v := log x/log z, w := x1/log(v+2), and

ω(n; z, w) :=
∑

z<p≤w
p|n

1.

Proof. Let Q0 ≥ 2 be a constant for which (3.17) holds. Suppose that
z > Q0 is sufficiently large. By (2.4), (3.17) and the fact that

∑
p ψ0(p) <∞,

we find ∑
Q0<p≤x

f(p)F (σ0, p) = A(x) +O(1).

We compute

f(n)−A(x) =
∑
p|n

p>Q0

f(p)−
∑

Q0<p≤x

f(p)F (σ0, p) +O(1)

=
∑

Q0<p≤z
p|n

f(p) +
∑
p>z
p|n

f(p)

−
∑

Q0<p≤z

f(p)F (σ0, p)−
∑

z<p≤x

f(p)F (σ0, p) +O(1)

=
∑

Q0<p≤z

fp(n) +
∑
p>z
p|n

f(p)−
∑

z<p≤x

f(p)F (σ0, p) +O(1).
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By (3.1) we have∣∣∣ ∑
z<p≤x

f(p)F (σ0, p)
∣∣∣ ≤ ∑

z<p≤x

α(p)

pσ0
+O(1) ≤ β log(v + 2) +O(1).

Since ∑
p>z
p|n

|f(p)| ≤
∑

z<p≤x
p|n

1 < ω(n; z, w) + log(v + 2),

it follows that

f(n)−A(x) =
∑

Q0<p≤z

fp(n) +O(ω(n; z, w) + log(v + 2)).

We have thus proved∑
n≤y

α(n)(f(n)−A(x))m

=
∑
n≤y

α(n)
( ∑
Q0<p≤z

fp(n) +O(ω(n; z, w) + log(v + 2))
)m

.

Opening the mth power on the right-hand side by means of the multinomial
theorem completes the proof of Lemma 4.1.

Let z = x1/v and w = x1/log(v+2) be as in Lemma 4.1, where v ≥ 1 is a
function of x and m to be chosen later. Fix ϵ0 ∈ (0, 1) and η0 ∈ (0, 1], and
suppose that y ∈ [xη0 , x]. Under the hypotheses in Theorem 2.1, we seek to
estimate the weighted moments∑

n≤y

α(n)
( ∑
Q0<p≤z

fp(n)
)m

,

appearing in Lemma 4.1. Expanding out the mth power we see that

(4.1)
∑
n≤y

α(n)
( ∑
Q0<p≤z

fp(n)
)m

=
∑

Q0<p1,...,pm≤z

∑
n≤y

α(n)fp1···pm(n).

This suggests studying the sum∑
n≤y

α(n)fq(n)

for q ∈ N with ω(q) ≤ m, P−(q) > Q0 and P+(q) ≤ z. A key observation is
that fq(n) = fq(gcd(n,Rq)). From this we deduce∑

n≤y

α(n)fq(n) =
∑
a|Rq

fq(a)
∑
n≤y

gcd(n,Rq)=a

α(n) =
∑
ab|Rq

fq(a)µ(b)
∑
n≤y
ab|n

α(n).

Note that log y/log z ∈ [η0v, v]. By Lemma 3.3, there exists a constant
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v0 > 0, independent of Q0 and η0, such that

(4.2)
∑
n≤y

α(n)fq(n) = λα
(
G(σ0, q) +O(2O(m)Ey(q))

)
yσ0(log y)β−1

uniformly for all sufficiently large x, any y ∈ [xη0 , x] and

v ∈ [η−1
0 , v0 log x/log log x],

and all m ≤ (1− ϱ0)ϵ0 log y/log z, where

G(σ0, q) :=
∑
ab|Rq

fq(a)µ(b)F (σ0, ab),

Ey(q) :=
∑
ab|Rq

|fq(a)|L(ab)
ab

(
1

(log y)A0
+
ϵβ,1 logP

+(ab)

log y

)
.

Combining (4.2) with (4.1) gives

(4.3)
∑
n≤y

α(n)
( ∑
Q0<p≤z

fp(n)
)m

= λα
(
G(z) +O

(
2O(m)D(y, z)

))
yσ0(log y)β−1,

where

G(z) :=
∑

Q0<p1,...,pm≤z

G(σ0, p1 · · · pm),

D(y, z) :=
∑

Q0<p1,...,pm≤z

Ey(p1 · · · pm).

5. Estimation of G(z) and D(y, z). It is easy to see that G(σ0, q)
is multiplicative as a function of q. Indeed, given any q1, q2 ∈ N with
gcd(q1, q2) = 1, we have

G(σ0, q1)G(σ0, q2) =
∑

a1b1|Rq1
a2b2|Rq2

fq1(a1)fq2(a2)µ(b1)µ(b2)F (σ0, a1b1)F (σ0, a2b2)

=
∑

a1b1|Rq1
a2b2|Rq2

fq1(a1a2)fq2(a1a2)µ(b1b2)F (σ0, a1a2b1b2)

=
∑

a1b1|Rq1
a2b2|Rq2

fq1q2(a1a2)µ(b1b2)F (σ0, a1a2b1b2)

=
∑

ab|Rq1q2

fq1q2(a)µ(b)F (σ0, ab) = G(σ0, q1q2).
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Furthermore,

G(σ0, p
ν) = fpν (1) + fpν (p)F (σ0, p)− fpν (1)F (σ0, p)

= (−f(p)F (σ0, p))ν +
(
f(p)(1− F (σ0, p))

)ν
F (σ0, p)

− (−f(p)F (σ0, p))νF (σ0, p)
= f(p)νF (σ0, p)(1− F (σ0, p))

×
(
(−1)νF (σ0, p)

ν−1 + (1− F (σ0, p))
ν−1

)
for all prime powers pν . Note that G(σ0, p) = 0, |G(σ0, pν)| ≤ 1/4, and
G(σ0, p

ν) ≥ 0 when 2 | ν. In addition, by (3.17),

G(σ0, p
2) = f(p)2F (σ0, p)(1− F (σ0, p))(5.1)

= α(p)
f(p)2

pσ0
+O

(
ψ0(p) +

α(p)2

p2σ0

)
and

(5.2) |G(σ0, pν)| ≤ |f(p)|νF (σ0, p) ≤ α(p)
f(p)2

pσ0
+O

(
ψ0(p) +

α(p)2

p2σ0

)
for all pν with p > Q0 and ν ≥ 2.

Now we proceed to estimate G(z) in the main term of (4.3). Recall that
y ∈ [xη0 , x] and z = x1/v. We shall suppose in this section that 1 ≤ m ≤
min(v, h0B(x)1/3), log(v + 2) = o(B(x)), and m log(v + 2) ≪ B(x), where
0 < h0 < (3/2)2/3 is any given constant, and obtain a uniform treatment
for G(z) and D(y, z) under this more general assumption. Since G(σ0, q) is
multiplicative in q and G(σ0, p) = 0 for all p > Q0, we have

(5.3) G(z) =
∑

Q0<p1,...,pm≤z
p1···pm squareful

G(σ0, p1 · · · pm).

When 2 |m, the main contribution arises from

(5.4)
m!

(m/2)!2m/2

∑
Q0<p1,...,pm/2≤z
p1,...,pm/2 distinct

G(σ0, p
2
1 · · · p2m/2)

= Cm

∑
Q0<p1,...,pm/2≤z
p1,...,pm/2 distinct

m/2∏
i=1

G(σ0, p
2
i ),

since the number of ways to partition a set of m elements into m/2 two-
element equivalence classes is

m!

(m/2)!2m/2
=

m!

m!!
= Cm.
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The sum on the right-hand side of (5.4) can be rewritten as

∑
Q0<p1,...,pm/2−1≤z
p1,...,pm/2−1 distinct

m/2−1∏
i=1

G(σ0, p
2
i )

∑
Q0<pm/2≤z

pm/2 ̸=p1,...,pm/2−1

G(σ0, p
2
m/2).

By (5.1) and (3.1), the inner sum over pm/2 is equal to

∑
Q0<p≤z

G(σ0, p
2)−

m/2−1∑
i=1

G(σ0, p
2
i ) = B(z) +O

( ∑
Q0<p≤qN

α(p)

pσ0

)
= B(z) +O(log log(m+ 2)),

where N = m/2+π(Q0) and qN is the Nth prime. Repeating this argument
we obtain ∑

Q0<p1,...,pm/2≤z
p1,...,pm/2 distinct

m/2∏
i=1

G(σ0, p
2
i ) =

(
B(z) +O(log log(m+ 2))

)m/2
.

But

B(x)−B(z) =
∑

z<p≤x

α(p)
f(p)2

pσ0
≤ β log(v + 2) +O(1).

Hence when m is even, the main contribution to G(z) is given by

Cm

(
B(x) +O(log(v + 2))

)m/2
= CmB(x)m/2

(
1 +O(mB(x)−1 log(v + 2))

)
.

The remaining contribution to G(z) comes from

(5.5)
∑

s<m/2

∑
Q0<p1<···<ps≤z

∑
k1+···+ks=m
k1,...,ks≥2

(
m

k1, . . . , ks

) s∏
i=1

G(σ0, p
ki
i ).

Since (5.5) vanishes when m ≤ 2, we may suppose m ≥ 3. By (5.2),
s∏

i=1

|G(σ0, pkii )| ≤
s∏

i=1

(
α(pi)

f(pi)
2

pσ0
i

+O

(
ψ0(pi) +

α(pi)
2

p2σ0
i

))
.

Thus,

∑
Q0<p1<···<ps≤z

s∏
i=1

|G(σ0, pkii )|

≤ 1

s!
(B(x) +O(1))s =

1

s!
B(x)s

(
1 +O(sB(x)−1)

)
≪ B(x)s

s!
.
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Since ∑
k1+···+ks=m
k1,...,ks≥2

(
m

k1, . . . , ks

)
≤ m!

2s

∑
k1+···+ks=m
k1,...,ks≥2

1 =
m!

2s

(
m− s− 1

s− 1

)
, (2)

the sum (5.5) is

≪ m!
∑

s<m/2

1

s!2s

(
m− s− 1

s− 1

)
B(x)s.

To further estimate the latter sum, we put m1 := ⌊(m − 1)/2⌋ and observe
that ∑

s<m/2

1

s!2s

(
m− s− 1

s− 1

)
B(x)s

= B(x)m1
∑
s≤m1

1

s!2s

(
m− s− 1

s− 1

)
B(x)s−m1

≤ B(x)m1m−3m1
∑
s≤m1

1

s!2s

(
m− s− 1

s− 1

)
h
3(m1−s)
0 m3s,

where we have used the assumption that B(x) ≥ m3/h30 with some 0 < h0 <
(3/2)2/3. Let

em :=

{
1 if 2 |m,
1/2 otherwise.

Then m1 = m/2− em. Note that

m−3m1
∑

s≤m/4

1

s!2s

(
m− s− 1

s− 1

)
h
3(m1−s)
0 m3s

≤ m−3m1
∑

s≤m/4

1

s!(s− 1)!

(
9

4

)m1−s(m4

2

)s

≪ m−3m1

(
9

4

)m1
(
m4

2

)m/4

≪ Cm

m!
m3em ,

since
Cm

m!
=

1

2m/2Γ (m/2 + 1)
≍ m−(m+1)/2em/2

(2) We have corrected the binomial coefficient in [17, (11)].
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by Stirling’s formula. Next,

m−3m1
∑

m/4<s≤m/3

1

s!2s

(
m− s− 1

s− 1

)
h
3(m1−s)
0 m3s

≤ 2O(m)m−3m1
∑

m/4<s≤m/3

1

s!(s− 1)!

(
m4

2

)s

≤ 2O(m)m−3m1

mm/2

∑
m/4<s≤m/3

(
m4

2

)s

≤ 2O(m)m−3m1

mm/2
m4m/3 = 2O(m)m−2m/3+3em

≪ Cm

m!
m3em .

Finally, we observe that

m−3m1
∑

m/3<s≤m1

1

s!2s

(
m− s− 1

s− 1

)
h
3(m1−s)
0 m3s

= m−3m1
∑

m/3<s≤m1

1

s!2s

(
m− s− 1

m− 2s

)
h
3(m1−s)
0 m3s

≤ m−3m1
∑

m/3<s≤m1

1

s!2s
(m− s)m−2sh

3(m1−s)
0 m3s

≤ m−3m1

m1!

∑
m/3<s≤m1

m1!

s!2s

(
2m

3

)m−2s

h
3(m1−s)
0 m3s

≤ m−3m1

m1!

∑
m/3<s≤m1

1

2s

(
m

2

)m1−s(2m

3

)m−2s

h
3(m1−s)
0 m3s

≪ mm−2m1

m1!2m/2

∑
m/3<s≤m1

(
2h

3/2
0

3

)m−2s

≪ Cm

m!
m3em .

Collecting the estimates above, we deduce that the contribution to G(z)
from (5.5) is

≪ Cmm
3emB(x)m1 = CmB(x)m/2

(
m3

B(x)

)em

≤ CmB(x)m/2 m3/2√
B(x)

.

We can therefore conclude that

(5.6) G(z) = CmB(x)m/2

(
χm

(
1 +O

(
m log(v + 2)

B(x)

))
+O

(
m3/2√
B(x)

))
.
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Next, we estimate D(y, z) in the error term of (4.3). By definition,

D(y, z) =
∑
s≤m

∑
Q0<p1<···<ps≤z

∑
k1+···+ks=m
k1,...,ks∈N

(
m

k1, . . . , ks

)
Ey(p

k1
1 · · · pkss ).

Let

H(σ0, q) :=
∑
ab|Rq

|fq(a)|L(ab)
ab

.

Then H(σ0, q) is multiplicative in q. Moreover,

Ey(q) ≤ H(σ0, q)

(
1

(log y)A0
+
ϵβ,1 logP

+(q)

log y

)
.

It follows that D(y, z) ≤ D1(y, z) + ϵβ,1D2(y, z), where

D1(y, z) :=
1

(log y)A0

×
∑
s≤m

∑
Q0<p1<···<ps≤z

∑
k1+···+ks=m
k1,...,ks∈N

(
m

k1, . . . , ks

) s∏
i=1

H(σ0, p
ki
i ),

D2(y, z) :=
1

log y

×
∑
s≤m

∑
Q0<p1<···<ps≤z

log ps
∑

k1+···+ks=m
k1,...,ks∈N

(
m

k1, . . . , ks

) s∏
i=1

H(σ0, p
ki
i ).

By Mertens’ theorems [22, Theorems 425, 427], for any t ≥ 3,

(5.7)
∑
p≤t

(log log(p+ 1))ϑ0

p
=

1

ϑ0 + 1
(log log t)ϑ0+1 +O(1)

and

(5.8)
∑
p≤t

(log log(p+ 1))ϑ0 log p

p

=

(
1 +O

(
1

log t
+

ϑ0
log log t

))
(log log t)ϑ0 log t.

Furthermore, let

Tn(t) :=
n∑

k=0

{
n

k

}
tk
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denote the nth Touchard polynomial, where{
n

k

}
:=

1

k!

∑
n1+···+nk=n
n1,...,nk∈N

(
n

n1, . . . , nk

)

is the kth Stirling number of the second kind of size n. The sequence
{Tn(t)}∞n=0 of the Touchard polynomials is known to satisfy the recurrence
relation

Tn+1(t) = t
n∑

i=0

(
n

i

)
Ti(t),

from which one verifies readily by induction that

(5.9) Tn(t) ≤
(
t+

n− 1

2

)n

for all n ≥ 1 and t ≥ 0. Since

H(σ0, p
ν) = |f(p)|F (σ0, p)

(
1 +

L(p)

p

)
+

|f(p)|L(p)
p

(1− F (σ0, p))

= |f(p)|
(
F (σ0, p) +

(log log(p+ 1))ϑ0

p

)
for any prime powers pν with p > Q0, we deduce from (3.17), (5.7), (5.8)
and (5.9) that

D1(y, z) ≤
2O(m)

(log x)A0

∑
s≤m

1

s!
(log log z)s(ϑ0+1)

∑
k1+···+ks=m
k1,...,ks∈N

(
m

k1, . . . , ks

)

≤ 2O(m)

(log x)A0
Tm((log log z)ϑ0+1) ≤ 2O(m)

(log x)A0
(log log x)m(ϑ0+1),

and

D2(y, z) ≤
2O(m) log z

log x

∑
s≤m

1

(s− 1)!
(log log z)s(ϑ0+1)−1

∑
k1+···+ks=m
k1,...,ks∈N

(
m

k1, . . . , ks

)

≤ 2O(m)

v log log z
Tm((log log z)ϑ0+1) ≤ 2O(m)

v
(log log x)m(ϑ0+1)−1.

Hence, we conclude that

(5.10) D(y, z) ≤ 2O(m)(log log x)m(ϑ0+1)−1

(
log log x

(log x)A0
+
ϵβ,1
v

)
.

6. Estimation of E(y, z, w;m). In this section, we seek to bound the
function E(y, z, w;m) introduced in Lemma 4.1 under the assumptions of
Theorem 2.1. We start with the case β=1. Suppose that 1≤m≤h0B(x)1/3,
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where 0 < h0 < (3/2)2/3 is any given constant. Recall that y ∈ [xη0 , x],
z = x1/v and w = x1/log(v+2). With the choice v = (1 − ϱ0)

−1ϵ−1
0 η−1

0 m,
we clearly have v ∈ [η−1

0 , v0 log x/log log x] and m ≤ (1 − ϱ0)ϵ0 log y/log z.
Inserting (5.6) and (5.10) into (4.3), we obtain

(6.1)
∑
n≤y

α(n)
( ∑
Q0<p≤z

fp(n)
)m

= λαCmB(x)m/2

(
χm+O

(
m3/2√
B(x)

))
yσ0 .

The key lies in the estimation of the sum

(6.2)
∑
n≤y

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣aω(n; z, w)b.

In the present case, we may simply use the trivial bound ω(n; z, w) ≪ v ≪ m,
so that (6.2) is bounded above by

2O(b)mb
∑
n≤y

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a.

It is clear that we can use (6.1) to handle the sum above. If a is even, then
this sum is ≪ λαCaB(x)a/2yσ0 ; if a is odd, then it is

≤
(∑
n≤y

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a−1)1/2(∑

n≤y

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a+1)1/2

≪ λα
√
Ca−1Ca+1B(x)a/2yσ0

by the Cauchy–Schwarz inequality. The sequence {Cℓ}∞ℓ=1 is strictly increas-
ing, which can be easily seen from the identity

Cℓ+1

Cℓ
=
ℓ+ 1√

2
· Γ (ℓ/2 + 1)

Γ ((ℓ+ 1)/2 + 1)
=

√
2 · Γ (ℓ/2 + 1)

Γ ((ℓ/2 + 1/2)

and the fact that Γ (y) is strictly increasing on [3/2,∞). Moreover, by Stir-
ling’s formula,

Cℓ

Cℓ+1
≪ 1

ℓ+ 1
· ((ℓ+ 1)/2)ℓ/2+1e−(ℓ+1)/2

(ℓ/2)(ℓ+1)/2e−ℓ/2
≪ 1√

ℓ+ 1
,

which implies that

Ca ≤ 2O(m−a)Cm

√
a!

m!
≤ 2O(m−a)Cm

√
aa

mm
≤ 2O(m−a)Cm

(
√
m)m−a

for all 0 ≤ a ≤ m. Hence, (6.2) is bounded above by

2O(m−a)λαCmm
b

(
√
m)m−a

B(x)a/2yσ0 ≤ 2O(m−a)λαCm(
√
m)m−aB(x)a/2yσ0 .
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Inserting this inequality into the definition of E(y, z, w;m), we conclude that

E(y, z, w;m) ≤ λαCmy
σ0

m−1∑
a=0

(
m

a

)
B(x)a/2(O(

√
m))m−a(6.3)

≪ λαCmm
3/2B(x)(m−1)/2yσ0 .

Now we consider the case β ̸= 1. Suppose that

1 ≤ m≪ B(x)1/3/(log log log x)2/3

and B(x)/(log log log x)2 → ∞ as x→ ∞. In this case we take

v = (log log x)m(ϑ0+2),

so that v ∈ [2η−1
0 , v0 log x/log log x] and m ≤ (1 − ϱ0)ϵ0 log t/log z for any

t ∈ [xη0/2, x] when x is sufficiently large. Inserting (5.6) and (5.10) into (4.3)
leads to

(6.4)
∑
n≤t

α(n)
( ∑
Q0<p≤z

fp(n)
)m

= λαCmB(x)m/2

(
χm +O

(
m3/2√
B(x)

))
tσ0(log t)β−1

uniformly for all t ∈ [xη0/2, x]. Again, we need to estimate (6.2) uniformly
for y ∈ [xη0 , x]. Note that (6.2) can be rewritten as

b∑
k=1

∑
z<p1<···<pk≤w

∑
l1+···+lk=b
l1,...,lk≥1

(
b

l1, . . . , lk

) ∑
n≤y

p1···pk|n

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a.

Observe that∑
n≤y

p1···pk|n

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a =

∑
q≤y

Rq=p1···pk

α(q)
∑

n′≤y/q
gcd(n′,q)=1

α(n′)
∣∣∣ ∑
Q0<p≤z

fp(n
′)
∣∣∣a

≤
∑
q≤y

Rq=p1···pk

α(q)
∑

n≤y/q

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a,

since p1, . . . , pk > p.
If q = pν11 · · · pνkk >

√
y with given z < p1 < · · · < pk ≤ w, then we have

the trivial estimate∑
n≤y/q

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a ≤ π(z)a

∑
n≤3y/q

α(n)

≪ λαπ(z)
a

(
y

q

)σ0
(
log

3y

q

)β−1
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by (3.4) and the fact that |fp(n)| ≤ 1. By the proof of Lemma 3.1, and in
particular by (3.3), we find that

∑
√
y<q≤y

Rq=p1···pk

α(q)

qσ0

(
log

3y

q

)β−1

=
∑

√
y<p

ν1
1 ···pνkk ≤y

ν1,...,νk≥1

α(pν11 ) · · ·α(pνkk )

pσ0ν1
1 · · · pσ0νk

k

(
log

3y

pν11 · · · pνkk

)β−1

≪ 2O(k)(log y)k+β−2

(
√
y)1−ϱ0

,

from which it follows that∑
√
y<q≤y

Rq=p1···pk

α(q)
∑

n≤y/q

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a ≪ λαπ(z)

a 2
O(k)yσ0(log y)k+β−2

(
√
y)1−ϱ0

.

Summing the above over all z < p1 < · · · < pk ≤ w yields immediately

(6.5)
∑

z<p1<···<pk≤w

∑
√
y<q≤y

Rq=p1···pk

α(q)
∑

n≤y/q

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a

≤ λαπ(z)
aπ(w)k

2O(k)yσ0(log y)k+β−2

k!(
√
y)1−ϱ0

≤ λαy
σ0(log y)β−1

k!( 3
√
y)1−ϱ0

for sufficiently large x, since y ∈ [xη0 , x] and

a+ k ≤ m≪ (log log x)1/3/(log log log x)2/3,

and

π(z)aπ(w)k ≤
(

w

logw
+O

(
w

(logw)2

))m

≪
(

w

logw

)m

≤ x1/log log log x(m log log log x)m

(log x)m
.

If q = pν11 · · · pνkk ≤ √
y, then xη0/2 ≤ √

y ≤ y/q ≤ y ≤ x. Thus, we can
apply (6.4) with t = y/q to handle∑

n≤y/q

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a.

If a is even, then this sum is
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≪ λαCaB(x)a/2
(
y

q

)σ0
(
log

y

q

)β−1

≤ 2O(m−a)λαCm

(
√
m)m−a

B(x)a/2
(
y

q

)σ0
(
log

y

q

)β−1

;

if a is odd, then it is

≤
( ∑
n≤y/q

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a−1)1/2( ∑

n≤y/q

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a+1)1/2

≪ λα
√
Ca−1Ca+1B(x)a/2

(
y

q

)σ0
(
log

y

q

)β−1

≤ 2O(m−a)λαCm

(
√
m)m−a

B(x)a/2
(
y

q

)σ0
(
log

y

q

)β−1

by Cauchy–Schwarz. It follows that∑
q≤√

y
Rq=p1···pk

α(q)
∑

n≤y/q

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a

≤ 2O(m−a)λαCmy
σ0

(
√
m)m−a

B(x)a/2
∑
q≤√

y
Rq=p1···pk

α(q)

qσ0

(
log

y

q

)β−1

≤ 2O(m−a)λαCm

(
√
m)m−a

B(x)a/2yσ0(log y)β−1
k∏

i=1

∞∑
ν=1

α(pνi )

pσ0ν
i

=
2O(m−a)λαCm

(
√
m)m−a

B(x)a/2yσ0(log y)β−1
k∏

i=1

(
α(pi)

pσ0
i

+ ψ0(pi)

)
for all 0 ≤ a < m. Since (3.1) implies that

∑
z<p1<···<pk≤w

k∏
i=1

(
α(pi)

pσ0
i

+ ψ0(pi)

)
≤ 1

k!

( ∑
z<p≤w

(
α(p)

pσ0
+ ψ0(p)

))k

≤ 2O(k)

k!
(log v)k,

we obtain

(6.6)
∑

z<p1<···<pk≤w

∑
q≤√

y
Rq=p1···pk

α(q)
∑

n≤y/q

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a

≤ 2O(m−a)λαCm

k!(
√
m)m−a

(log v)kB(x)a/2yσ0(log y)β−1.
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Combining (6.6) with (6.5) and extending the inner sum over q to the
entire range, we conclude that∑

z<p1<···<pk≤w

∑
q≤y

Rq=p1···pk

α(q)
∑

n≤y/q

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣a

≤ 2O(m−a)λαCm

k!(
√
m)m−a

(log v)kB(x)a/2yσ0(log y)β−1.

Hence, (6.2) is bounded above by

2O(m−a)λαCm

(
√
m)m−a

B(x)a/2yσ0(log y)β−1
b∑

k=1

(log v)k

k!

∑
l1+···+lk=b
l1,...,lk≥1

(
b

l1, . . . , lk

)

=
2O(m−a)λαCm

(
√
m)m−a

B(x)a/2yσ0(log y)β−1
b∑

k=1

{
b

k

}
(log v)k

≤ 2O(m−a)λαCm

(
√
m)m−a

B(x)a/2Tb(log v)y
σ0(log y)β−1.

It follows by (5.9) that the above does not exceed

2O(m−a)λαCm

(
√
m)m−a

B(x)a/2(log v)byσ0(log y)β−1,

where we have used the observation that log v > m log log log x > m ≥ b. In
other words, we have shown that∑

n≤y

α(n)
∣∣∣ ∑
Q0<p≤z

fp(n)
∣∣∣aω(n; z, w)b
≤ 2O(m−a)λαCm

(
√
m)m−a

B(x)a/2(log v)byσ0(log y)β−1.

Inserting this inequality into the definition of E(y, z, w;m), we conclude that

(6.7) E(y, z, w;m)

≤ λαCmy
σ0(log y)β−1

m−1∑
a=0

(
m

a

)
B(x)a/2

(
O

(
log v√
m

))m−a

≪ λαCm

√
m (log v)B(x)(m−1)/2yσ0(log y)β−1

≪ λαCmm
3/2(log log log x)B(x)(m−1)/2yσ0(log y)β−1.

7. Deduction of Theorems 2.1 and 2.2. Theorem 2.1 now follows
immediately upon combining (6.1) and (6.4) with (6.3) and (6.7) and invok-
ing Lemma 4.1 and (3.4). In fact, we have shown that the same asymptotic
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formulas which hold for M(x;m) also hold for

(7.1) S(y)−1
∑
n≤y

α(n)(f(n)−A(x))m

uniformly in the range y ∈ [xη0 , x], where η0 ∈ (0, 1] is any fixed constant.
Now we prove Theorem 2.2. Recall that under the hypotheses in Theo-

rem 2.2, the multiplicative function α(n) satisfies conditions (2.1)–(2.4). We
shall again suppose A0 ∈ (0, 1) throughout the proof. Define the strongly
additive function f̃ : N → R, called the strongly additive contraction of f , by
f̃(p) = f(p) for all primes p. Then

(7.2)
∑
n≤x

α(n)(f(n)−A(x))m

=
m∑
k=0

(
m

k

)∑
n≤x

α(n)(f̃(n)−A(x))k(f(n)− f̃(n))m−k

for every m ∈ N. The term corresponding to k = m can be estimated directly
using Theorem 2.1. Hence, it remains to deal with

(7.3)
∑
n≤x

α(n)(f̃(n)−A(x))k(f(n)− f̃(n))l

for 0 ≤ k < m and l = m− k.
Note that∣∣∣∑
n≤x

α(n)(f̃(n)−A(x))k(f(n)− f̃(n))l
∣∣∣

≤
∑
n≤x

α(n)|f̃(n)−A(x)|k
∣∣∣ ∑
pν∥n,ν≥2

(f(pν)− f(p))
∣∣∣l

≤
∑

p1,...,pl≤
√
x

∑
p
ν1
1 ,...,p

νl
l ≤x

ν1,...,νl≥2

|f(pν11 )− f(p1)| · · · |f(pνll )− f(pl)|

×
∑
n≤x

p
ν1
1 ,...,p

νl
l ∥n

α(n)|f̃(n)−A(x)|k.

Since f(pν) = O(νκ) for all pν , the last expression above does not exceed

2O(l)
∑
s≤l

∑
p1<···<ps≤

√
x

∑
l1+···+ls=l
l1,...,ls∈N

(
l

l1, . . . , ls

)

×
∑

p
ν1
1 ···pνss ≤x
ν1,...,νs≥2

νκl11 · · · νκlss

∑
n≤x

p
ν1
1 ,...,pνss ∥n

α(n)|f̃(n)−A(x)|k.
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If we write n = pν11 · · · pνss n′ with gcd(n′, p1 · · · ps) = 1, then it is clear that

|f̃(n)−A(x)|k =
∣∣∣f̃(n′)−A(x) +

s∑
i=1

f(pi)
∣∣∣k

≤
k∑

a=0

(
k

a

)
|f̃(n′)−A(x)|a

∣∣∣ s∑
i=1

f(pi)
∣∣∣k−a

.

Thus, the innermost sum of α(n)|f̃(n)−A(x)|k is not greater than

(7.4) α(pν11 ) · · ·α(pνss )
k∑

a=0

(
k

a

)∣∣∣ s∑
i=1

f(pi)
∣∣∣k−a ∑

n≤x/(p
ν1
1 ···pνss )

α(n)|f̃(n)−A(x)|a,

where we have dropped the superscript of n for simplicity of notation. Since
the right-hand side of the above clearly vanishes if p1 · · · ps >

√
x, we may

assume p1 · · · ps ≤
√
x instead. Let λ′ := 1 − ϱ0 − log2 λ > ρ0, and choose

a constant max(1/2,
√
ϱ0/λ′) < δ0 < 1 such that 1 − ϱ0 + δ20λ

′ > 1. Let
xs := x/(p1 · · · ps) and ys := xδ0s . Then xs ≥

√
x ≥ p1 · · · ps. If pν11 · · · pνss >

p1 · · · psys with given p1 < · · · < ps, then we use the trivial estimate∑
n≤x/(p

ν1
1 ···pνss )

α(n)|f̃(n)−A(x)|a

≪ 2O(a)(log x)a
∑

n≤x/(p
ν1
1 ···pνss )

α(n)

≪ λα2
O(a)(log x)a

(
x

pν11 · · · pνss

)σ0
(
log

3x

pν11 · · · pνss

)β−1

.

Thus, (7.4) is

≪ α(pν11 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s

(
log

3x

pν11 · · · pνss

)β−1

λα2
O(k)xσ0(log x)k.

Since α(pν) = O((λpϱ0+σ0−1)ν) for all pν , we have

∑
p1···psys<p

ν1
1 ···pνss ≤x

ν1,...,νs≥2

νκl11 · · · νκlss

α(pν11 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s

(
log

3x

pν11 · · · pνss

)β−1

≤ 2O(l)
∑

p1···psys<p
ν1
1 ···pνss ≤x

ν1,...,νs≥2

νκl11 · · · νκlss

×
(

λ

p1−ϱ0
1

)ν1

· · ·
(

λ

p1−ϱ0
s

)νs(
log

3x

pν11 · · · pνss

)β−1
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≤ 2O(l)

(p1 · · · ps)1−ϱ0

∑
ys<p

ν1
1 ···pνss ≤xs

ν1,...,νs≥1

νκl11 · · · νκlss

×
(

λ

p1−ϱ0
1

)ν1

· · ·
(

λ

p1−ϱ0
s

)νs(
log

3xs
pν11 · · · pνss

)β−1

.

It is not hard to see that the proof of (3.3) also gives

∑
z1<pν≤z2

(
λ

p1−ϱ0

)ν(
log

3z2
pν

)β−1

≪ (log(3z2/z1))
β−1

z
1−ϱ0−logp λ

1

uniformly for all primes p and all 0 < z1 ≤ z2. Thus, we have

∑
ys<p

ν1
1 ···pνss ≤xs

ν1,...,νs≥1

νκl11 · · · νκlss

(
λ

p1−ϱ0
1

)ν1

· · ·
(

λ

p1−ϱ0
s

)νs(
log

3xs
pν11 · · · pνss

)β−1

≤ 2O(l)(log x)κl
∑

ys<p
ν1
1 ···pνss ≤xs

ν1,...,νs≥1

(
λ

p1−ϱ0
1

)ν1

· · ·
(

λ

p1−ϱ0
s

)νs(
log

3xs
pν11 · · · pνss

)β−1

≤ 2O(l)(log x)κl
∑

p
ν2
2 ···pνss ≤xs

ν2,...,νs≥1

(
λ

p
logp1 λ

2

)ν2

· · ·
(

λ

p
logp1 λ
s

)νs (log(3xs/ys))
β−1

y
1−ϱ0−logp1 λ
s

≤ 2O(l)(log x)(κ+1)m+β−2

xδ0(1−δ0)λ′/2(p1 · · · ps)δ
2
0λ

′ ≤
2O(l)(log x)β−1

x(1−δ0)λ′/5(p1 · · · ps)δ
2
0λ

′ ,

where the penultimate inequality follows from the previous line together
with the observations that plog p1λi > λ for all 2 ≤ i ≤ s, that x(1+δ0)/2 ≥
(p1 · · · ps)1+δ0 , and that

y
1−ϱ0−logp1 λ
s ≥ yλ

′
s =

(
x(1−δ0)/2 · x

(1+δ0)/2

p1 · · · ps

)δ0λ′

≥ xδ0(1−δ0)λ′/2(p1 · · · ps)δ
2
0λ

′
.

It follows that

∑
p1···psys<p

ν1
1 ···pνss ≤x

ν1,...,νs≥2

νκl11 · · · νκlss

α(pν11 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s

(
log

3x

pν11 · · · pνss

)β−1

≤ 2O(l)

(p1 · · · ps)1−ϱ0+δ20λ
′ x

−(1−δ0)λ′/5(log x)β−1,
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from which we deduce that

(7.5)
∑

p1<···<ps≤
√
x

∑
p1···psys<p

ν1
1 ···pνss ≤x

ν1,...,νs≥2

νκl11 · · · νκlss

∑
n≤x

p
ν1
1 ,...,pνss ∥n

α(n)|f̃(n)−A(x)|k

≤ 2O(m)λαx
σ0−(1−δ0)λ′/5(log x)k+β−1

∑
p1<···<ps≤

√
x

1

(p1 · · · ps)1−ϱ0+δ20λ
′

≤ 1

s!
λαx

σ0−(1−δ0)λ′/6(log x)β−1.

On the other hand, if pν11 · · · pνss ≤ p1 · · · psys, then x(1−δ0)/2 ≤ x/(pν11 · · · pνss )
≤ x. Therefore, we can apply the asymptotic formulas for (7.1) with η0 =
(1− δ0)/2 and y = x/(pν11 · · · pνss ), in conjunction with the Cauchy–Schwarz
inequality, to estimate the inner sum in (7.4). As a consequence,∑
n≤x/(p

ν1
1 ···pνss )

α(n)|f̃(n)−A(x)|a

≪ 2O(m−a)λαCm

(
√
m)m−a

B(x)a/2
(

x

pν11 · · · pνss

)σ0
(
log

x

pν11 · · · pνss

)β−1

.

Inserting this into (7.4) shows that∑
n≤x

p
ν1
1 ,...,pνss ∥n

α(n)|f̃(n)−A(x)|k

≤ 2O(m−k)λαCm

(
√
m)m−k

· α(p
ν1
1 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s

×
(√

B(x) +O

(
1√
m

s∑
i=1

|f(pi)|
))k

xσ0(log x)β−1

=
2O(l)λαCm

ml/2
· α(p

ν1
1 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s
B(x)k/2

(
1 +O

(√
m

B(x)

))
xσ0(log x)β−1

≤ 2O(l)λαCm

ml/2
· α(p

ν1
1 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s
B(x)k/2xσ0(log x)β−1.

Note that∑
p
ν1
1 ···pνss ≤p1···psys

ν1,...,νs≥2

νκl11 · · · νκlss

α(pν11 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s

≤ 2O(l)
∑

p
ν1
1 ···pνss ≤p1···psys

ν1,...,νs≥2

νκl11 · · · νκlss

(
λ

p1−ϱ0
1

)ν1

· · ·
(

λ

p1−ϱ0
s

)νs
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≤ 2O(l)

(p1 · · · ps)1−ϱ0

∑
p
ν1
1 ···pνss ≤ys
ν1,...,νs≥1

νκl11 · · · νκlss

(
λ

p1−ϱ0
1

)ν1

· · ·
(

λ

p1−ϱ0
s

)νs

≤ 2O(l)

(p1 · · · ps)1−ϱ0

s∏
i=1

Li−⌈κli⌉(λ/p
1−ϱ0
i ),

where

Li−ℓ(ζ) :=

∞∑
n=1

nℓζn

is the polylogarithm function of order −ℓ and complex argument ζ with
|ζ| < 1, where ℓ ≥ 0 is any integer. For example, Li0(ζ) = ζ/(1 − ζ) and
Li−1(ζ) = ζ/(1− ζ)2. The function Li−ℓ(ζ) can be expressed in terms of the
Eulerian polynomial Aℓ(ζ):

Li−ℓ(ζ) =
ζAℓ(ζ)

(1− ζ)ℓ+1
,

where

Aℓ(ζ) :=
ℓ∑

j=0

〈
ℓ

j

〉
ζj

is the ℓth Eulerian polynomial, and〈
ℓ

j

〉
:=

j∑
a=0

(−1)a
(
ℓ+ 1

a

)
(j + 1− a)ℓ

is the jth Eulerian number of size ℓ. Combinatorially, it is known that, for
every ℓ ≥ 1, 〈

ℓ

j

〉
= #{τ ∈ Sℓ : τ has exactly j ascents},

where Sℓ is the set of all permutations of {1, . . . , ℓ}. Using this combinatorial
intepretation one finds that Aℓ(1) = #Sℓ = ℓ!. Since l1 + · · · + ls = l ≤ m,
we have

s∏
i=1

Li−⌈κli⌉(λ/p
1−ϱ0
i ) ≤ 2O(l)⌈κl1⌉! · · · ⌈κls⌉!

(p1 · · · ps)1−ϱ0
=

2O(l)(ll11 · · · llss )κ

(p1 · · · ps)1−ϱ0

≤ 2O(l)mκl

(p1 · · · ps)1−ϱ0
,

by Stirling’s formula. Hence,∑
p
ν1
1 ···pνss ≤p1···psys

ν1,...,νs≥2

νκl11 · · · νκlss

α(pν11 ) · · ·α(pνss )

pσ0ν1
1 · · · pσ0νs

s
≤ 2O(l)mκl

(p1 · · · ps)2(1−ϱ0)
.
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It follows that∑
p
ν1
1 ···pνss ≤p1···psys

ν1,...,νs≥2

νκl11 · · · νκlss

∑
n≤x

p
ν1
1 ,...,pνss ∥n

α(n)|f̃(n)−A(x)|k

≤ 2O(l)λαCmm
κl

ml/2(p1 · · · ps)2(1−ϱ0)
B(x)k/2xσ0(log x)β−1.

Summing the above over p1 < · · · < ps ≤
√
x, we arrive at∑

p1<···<ps≤
√
x

∑
p
ν1
1 ···pνss ≤p1···psys

ν1,...,νs≥2

νκl11 · · · νκlss

∑
n≤x

p
ν1
1 ,...,pνss ∥n

α(n)|f̃(n)−A(x)|k

≤ 2O(l)λαCmm
(κ−1/2)lB(x)k/2xσ0(log x)β−1

∑
p1<···<ps≤

√
x

1

(p1 · · · ps)2(1−ϱ0)

≤ 2O(l)

s!
λαCmm

(κ−1/2)lB(x)k/2xσ0(log x)β−1,

since ϱ0 ∈ [0, 1/2). Combining this estimate with (7.5), we obtain∑
p1<···<ps≤

√
x

∑
p
ν1
1 ···pνss ≤x
ν1,...,νs≥2

νκl11 · · · νκlss

∑
n≤x

p
ν1
1 ,...,pνss ∥n

α(n)|f̃(n)−A(x)|k

≤ 2O(l)

s!
λαCmm

(κ−1/2)lB(x)k/2xσ0(log x)β−1.

Therefore, (7.3) is bounded above by

2O(l)λαCmm
(κ−1/2)lB(x)k/2xσ0(log x)β−1

∑
s≤l

1

s!

∑
l1+···+ls=l
l1,...,ls∈N

(
l

l1, . . . , ls

)

≤ 2O(l)λαCmm
(κ−1/2)lB(x)k/2xσ0(log x)β−1Tl(1)

≤ 2O(l)Cmm
(κ+1/2)lB(x)k/2S(x),

which allows us to conclude that

m−1∑
k=0

(
m

k

)∑
n≤x

α(n)(f̃(n)−A(x))k(f(n)− f̃(n))m−k

≪ Cmm
κ+3/2B(x)(m−1)/2S(x),

provided that in addition 1 ≤ m ≪ B(x)1/(2κ+3). Inserting the above es-
timate and the estimate for the term corresponding to k = m into (7.2)
completes the proof of Theorem 2.2.
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8. Proof of Theorem 2.3 (sketch). Now we outline the proof of The-
orem 2.3. The first step is to redefine fq(n) introduced in Section 4. Again,
let us suppose that A0 ∈ (0, 1) and that |f(p)| ≤ 1 for all primes p. For every
q ∈ N we define

F (σ0, q) :=
∏
p|q

(1− F (σ0, p)), F̃ (σ0, q) :=
ρg(q)

φ(q)
F (σ0, q).

For each prime p we put

fp(n) :=

{
f(p)(1− F̃ (σ0, p)) if p |n,
−f(p)F̃ (σ0, p) otherwise,

and as before we set
fq(n) :=

∏
pν∥q

fp(n)
ν

for any q ∈ N. In addition, let cg ∈ N be the least positive integer such
that cgg(x) ∈ Z[x], and let Q0 > cg|g(0)| ≥ 1 be such that (3.17) holds.
Then for each q ∈ N with P−(q) > Q0 we have Zg(q) = Z∗

g (q) ⊆ (Z/qZ)×
and ρg(q) = #Z∗

g (q), where Zg(q) denotes the zero locus of g in Z/qZ. In
particular, we have 0 ≤ ρg(q) ≤ φ(q), which implies that 0 ≤ F̃ (σ0, q) ≤ 1
and |fq(n)| ≤ 1 for all n ∈ N.

Next, we need an analogue of Lemma 4.1. Let x be sufficiently large and
set z := xδ(x)/m > Q0. Then∑

Q0<p≤x

f(p)F̃ (σ0, p) = Af,g(x) +O(1)

by (2.1), (3.17), and the facts that ρg is bounded on prime powers and that∑
p ψ0(p) <∞. It is easily seen that

f(g(n))−Af,g(x) =
∑

Q0<p≤z

fp(g(n))+
∑
p>z
p|g(n)

f(p)−
∑

z<p≤x

f(p)F̃ (σ0, p)+O(1).

Note that∑
z<p≤x

f(p)F̃ (σ0, p) = Af,g(x)−Af,g(z) +O(1) ≪ log

(
m

δ(x)
+ 1

)
.

Since 1 ≤ g(n) ≪ ndg uniformly for all n ∈ N, where dg := deg g ≥ 1, we
have ∑

p>z
p|g(n)

f(p) ≪ m

δ(x)
.
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It follows that∑
n≤x

α(n)(f(g(n))−Af,g(x))
m =

∑
n≤x

α(n)
( ∑
Q0<p≤z

fp(g(n))
)m

+O(Eg(x;m)),

where

Eg(x;m) :=

m−1∑
k=0

(
m

k

)
2O(m−k)(mδ(x)−1)m−k

∑
n≤x

α(n)
∣∣∣∑
p≤z

fp(g(n))
∣∣∣k.

Now we turn to the estimation of∑
n≤x

α(n)
( ∑
Q0<p≤z

fp(g(n))
)m

=
∑

Q0<p1,...,pm≤z

∑
n≤x

α(n)fp1···pm(g(n)).

Let q ∈ N ∩ [1, xδ(x)] with ω(q) ≤ m, P−(q) > Q0 and P+(q) ≤ z. Then∑
n≤x

α(n)fq(g(n)) =
∑
ab|Rq

fq(a)µ(b)
∑
n≤x

ab|g(n)

α(n)

=
∑
ab|Rq

fq(a)µ(b)
∑

c∈Z∗
g (ab)

∑
n≤x

n≡c (mod ab)

α(n).

Thus in place of Lemma 3.3, we need to input in our analysis the information
about the distribution of values of α(n) with n restricted to reduced residue
classes. By Lemma 3.2, the innermost sum differs from

1

φ(ab)

∑
n≤x

gcd(n,ab)=1

α(n) =
1

φ(ab)
xσ0(log x)β−1

(
λα(ab) +O

(
1

(log x)A0

))

=
1

φ(ab)
xσ0(log x)β−1

(
λαF (σ0, ab) +O

(
1

(log x)A0

))
=

1

φ(ab)
λαx

σ0(log x)β−1

(
F (σ0, ab) +O

(
1

(log x)A0

))
by the amount ∆α(x; ab, c). Hence,∑
n≤x

α(n)fq(g(n)) = λα

(
G̃1(σ0, q) +O

(
G̃2(σ0, q)

(log x)A0

))
xσ0(log x)β−1 + Jq(x),

where
G̃1(σ0, q) :=

∑
ab|Rq

fq(a)µ(b)F̃ (σ0.ab),

G̃2(σ0, q) :=
∑
ab|Rq

ρg(ab)

φ(ab)
|fq(a)|,

Jq(x) :=
∑
ab|Rq

fq(a)µ(b)
∑

c∈Z∗
g (ab)

∆α(x; ab, c).
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It is clear that G̃1 and G̃2 are both multiplicative in q. Easy calculation
shows that

G̃1(σ0, p
ν)

= f(p)νF̃ (σ0, p)(1− F̃ (σ0, p))
(
(−1)νF̃ (σ0, p)

ν−1 + (1− F̃ (σ0, p))
ν−1

)
for any prime power pν . In particular, G̃1(σ0, p) = 0, |G̃1(σ0, p

ν)| ≤ 1/4, and
G̃1(σ0, p

ν) ≥ 0 when 2 | ν. Moreover,

G̃1(σ0, p
2) = f(p)2F̃ (σ0, p)(1− F̃ (σ0, p)) = ρg(p)

f(p)2

p
+O

(
F (σ0, p)

p
+

1

p2

)
,

and

|G̃1(σ0, p
ν)| ≤ |f(p)|νF̃ (σ0, p) ≤ ρg(p)

f(p)2

φ(p)
= ρg(p)

f(p)2

p
+O

(
1

p2

)
for all pν with p > Q0 and ν ≥ 2. In addition,∣∣∣ ∑

Q0<p1,...,pm≤z

Jp1···pm(x)
∣∣∣

≤
∑

q:ω(q)≤m
P+(q)≤z

µ(q)2
∑

c∈Z∗
g (q)

|∆α(x; q, c)|

×
∑
a|q

∑
s≤m

∑
k1+···+ks=m
k1,...,ks∈N

(
m

k1, . . . , ks

) ∑
Q0<p1<···<ps≤z

q|p1···ps

|f
p
k1
1 ···pkss

(a)|.

The inner sum over s is

≤
m∑

s=ω(q)

∑
k1+···+ks=m
k1,...,ks∈N

(
m

k1, . . . , ks

)
1

(s− ω(q))!

( ∑
Q0<p≤z

p∤q

|fp(a)|
)s−ω(q)

≤ 2O(m)
m∑

s=ω(q)

∑
k1+···+ks=m
k1,...,ks∈N

(
m

k1, . . . , ks

)
1

(s− ω(q))!
(log log x)s−ω(q)

≤ 2O(m)Tm(log log x) ≤ 2O(m)(log log x)m.

It follows by (2.5) that∣∣∣ ∑
Q0<p1,...,pm≤z

Jp1···pm(x)
∣∣∣

≤ 2O(m)(log log x)m
∑

q:ω(q)≤m
P+(q)≤z

µ(q)2
∑

c∈Z∗
g (q)

|∆α(x; q, c)|

≤ 2O(m)(log log x)mS(x) exp(−(log log x)1/3+ϵ0),
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which is o(S(x)). These observations allow us to conclude the proof of The-
orem 2.3 by arguing as in Sections 5 and 6. It is also clear from the last
inequality above that the bound S(x) exp(−(log log x)1/3+ϵ0) in (2.5) can be
weakened to a complicated one involving δ(x) and Bf,g(x).

9. Proofs of Theorem 2.4 and Corollary 2.5 (sketch). Now we
outline the proof of Theorem 2.4, which borrows the ideas from the proofs
of Theorem 2.1 and [8, Theorem 1] with proper modifications. Let 0 < ϵ <
min(1,K), and take z := x1/v and

w :=

{
x1/log(v+2) if β = 1,

x1/(ϵ log(v+2)) if β ̸= 1,

where we recall that v ≍ m when β = 1, and v = (log log x)m(ϑ0+2) when
β ̸= 1 as chosen in Section 6. Having made these choices, we deduce that
ϵ log(v + 2) → ∞ as x→ ∞ in the case β ̸= 1. Let

P−
ϵ (x) :=

{
p ≤ x : |f(p)| ≤ ϵ

√
B∗(x)

}
,

P+
ϵ (x) :=

{
p ≤ x : ϵ

√
B∗(x) < |f(p)| ≤ K

√
B∗(x)

}
,

P∞(x) :=
{
p ≤ x : |f(p)| > K

√
B∗(x)

}
,

and put PK(x) := P−
ϵ (x)∪P+

ϵ (x). We consider the strongly additive function

fϵ(n;x) :=
∑
p|n

p∈P−
ϵ (x)

f(p) + ϵβ,1
∑
p|n

p∈P+
ϵ (x)∩(z,x]

f(p) +
∑
p|n

p∈P∞(x)

f(p),

where we recall that ϵβ,1 takes value 0 if β = 1 and 1 otherwise, and define

Aϵ(x) :=
∑

p∈P−
ϵ (x)

α(p)
f(p)

pσ0
, Bϵ(x) :=

∑
p∈P−

ϵ (x)

α(p)
f(p)2

pσ0
.

By hypothesis,

B(x)−Bϵ(x) =
∑
p≤x

|f(p)|>ϵ
√

B∗(x)

α(p)
f(p)2

pσ0
= o(B∗(x)),

and so

|Aϵ(x)−A(x)| ≤ 1

ϵ
√
B∗(x)

∑
p≤x

|f(p)|>ϵ
√

B∗(x)

α(p)
f(p)2

pσ0
= o(ϵ−1

√
B∗(x) ).

We expect that the distribution of fϵ(n;x) is close to being Gaussian
with mean A(x) and variance B(x) when x gets sufficiently large. In what
follows, we shall restrict our attention to the case β ̸= 1, since the opposite
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case is similar and easier. Looking back at the proof of Lemma 4.1, we find,
for sufficiently large x, that∑
p∈P−

ϵ (x)∩(Q0,x]

f(p)F (σ0, p) = Aϵ(x) +O(ϵ
√
B∗(x)) = A(x) +O(ϵ

√
B∗(x)),

so that

(9.1) fϵ(n;x)−A(x)

=
∑

p∈P−
ϵ (x)∩(Q0,z]

fp(n) +
∑
p|n

p∈PK(x)∩(z,w]

f(p) +O(ϵ
√
B(x)),

where we have used the hypothesis that f(n) = o(
√
B(x)) for all n ≤ x

whose prime factors p satisfy |f(p)| > K
√
B∗(x). This leads to an ana-

logue of Lemma 4.1 in which the second sum above plays the same role as
ω(n; z, w). To estimate the moments of fϵ(n;x), one only needs to recycle the
arguments used in the proof of Theorem 2.1 and make suitable modifications.
For instance, the estimation of∑

n≤y

α(n)
( ∑
p∈P−

ϵ (x)∩(Q0,z]

fp(n)
)m

is essentially the same as that of (4.1) given in Sections 4 and 5, except that
we use the inequality |f(p)| ≤ ϵ

√
B∗(x) for p ∈ P−

ϵ (x) in place of the bound
f(p) = O(1) throughout the argument. This way, we obtain

(9.2)
∑
n≤y

α(n)
( ∑
p∈P−

ϵ (x)∩(Q0,z]

fp(n)
)m

= λα

(
µm +O

(
ϵ log v

log log log x

))
B(x)m/2yσ0(log y)β−1

= λα(µm +O(ϵ))B(x)m/2yσ0(log y)β−1

uniformly for y ∈ [xη0 , x], where η0 ∈ (0, 1] is any given constant. On the
other hand, the estimation of the error involving the second sum in (9.1)
is essentially the same as that of E(y, z, w;m) in the case β ̸= 1 given in
Section 6. The only difference is that we now make use of the estimates
|f(p)| ≤ K

√
B∗(x) for all p ∈ PK(x) and∑

p∈PK(x)∩(z,w]

α(p)
|f(p)|ν

pσ0
≪ B∗(x)(ν−1)/2

∑
p∈PK(x)∩(z,w]

α(p)
|f(p)|
pσ0

≪ ϵB∗(x)ν/2 log v ≪ ϵB(x)ν/2

for all ν ≥ 1, which can be easily seen by considering p ∈ P−
ϵ (x) and



50 K. (S.) Fan

p ∈ P+
ϵ (x) separately, in place of the estimates f(p) = O(1) and∑

z<p≤w

α(p)
|f(p)|ν

pσ0
= O(log v) = O(log log log x),

respectively. One shows in this way that the error involving the second sum
in (9.1) is O(ϵλαB(x)m/2yσ0(log y)β−1). Combining this estimate with (9.2)
and taking y = x yields

S(x)−1
∑
n≤x

α(n)(fϵ(n;x)−A(x))m = (µm +O(ϵ))B(x)m/2

for every fixed m ∈ N and all sufficiently large x, where the implied constant
is independent of ϵ.

To complete the proof of Theorem 2.4 for β ̸= 1, it is sufficient to show

(9.3) S(x)−1
∑
n≤x

α(n)|f(n)− fϵ(n;x)|m = O(ϵB∗(x)m/2)

for every given ϵ ∈ (0, 1) and m ∈ N, where the implicit constant is inde-
pendent of ϵ. Since the case where m is odd follows from the case where m
is even by Cauchy–Schwarz, we only need to consider the latter. The proof
of this case is largely the same as that of [8, Lemma 2], except for the slight
complication for β ∈ (0, 1). When m is even, we have

S(x)−1
∑
n≤x

α(n)|f(n)− fϵ(n;x)|m

= S(x)−1
∑
n≤x

α(n)
∑

p1,...,pm|n
p1,...,pm∈P+

ϵ (x)∩[2,z]

f(p1) · · · f(pm),

which, after grouping terms according to the distinct primes among p1, . . . , pm,
becomes

(9.4)

S(x)−1
∑
s≤m

∑
p1<···<ps≤z

p1,...,ps∈P+
ϵ (x)

∑
k1+···+ks=m
k1,...,ks∈N

(
m

k1, . . . , ks

)
f(p1)

k1 · · · f(ps)ks
∑
n≤x

p1···ps|n

α(n).

By (3.4) we have∑
n≤x

p1···ps|n

α(n) =
∑
q≤x

Rq=p1···ps

α(q)
∑

n′≤x/q
gcd(n′,q)=1

α(n′)

≪ λαx
σ0

∑
q≤x

Rq=p1···ps

α(q)

qσ0

(
log

3x

q

)β−1

.
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Appealing to (3.3) we derive

∑
q≤x

Rq=p1···ps

α(q)

qσ0

(
log

3x

q

)β−1

≪ (log x)β−1
∑
q≤

√
x

Rq=p1···ps

α(q)

qσ0
+

∑
√
x<q≤x

Rq=p1···ps

α(q)

qσ0

(
log

3x

q

)β−1

≪ (log x)β−1
s∏

i=1

∞∑
ν=1

α(pνi )

pσ0ν
i

+
(log x)s+β−2

(
√
x)1−ϱ0

= (log x)β−1
s∏

i=1

(
α(pi)

pσ0
i

+ ψ0(pi)

)
+

(log x)s+β−2

(
√
x)1−ϱ0

.

These estimates together with (3.4) imply that (9.4) is ≪ Σ1 +Σ2, where

Σ1 :=
∑
s≤m

∑
p1<···<ps≤z

p1,...,ps∈P+
ϵ (x)

∑
k1+···+ks=m
k1,...,ks∈N

(
m

k1, . . . , ks

)
|f(p1)k1 · · · f(ps)ks |

×
s∏

i=1

(
α(pi)

pσ0
i

+ ψ0(pi)

)
,

Σ2 :=
(log x)m−1

(
√
x)1−ϱ0

×
∑
s≤m

∑
p1<···<ps≤z

p1,...,ps∈P+
ϵ (x)

∑
k1+···+ks=m
k1,...,ks∈N

(
m

k1, . . . , ks

)
|f(p1)k1 · · · f(ps)ks |.

Since f(p) ≤ K
√
B∗(x) for all p ∈ P+

ϵ (x), we have

Σ2 ≪
(log x)m−1

(
√
x)1−ϱ0

π(z)mB∗(x)m/2 = o(B∗(x)m/2) ≪ ϵB∗(x)m/2.

To bound Σ1, we observe

|f(p1)k1 · · · f(ps)ks | ≪ B∗(x)(m−s)/2|f(p1) · · · f(ps)|.

Thus,

Σ1 ≤
∑
s≤m

B∗(x)(m−s)/2 1

s!

( ∑
p≤z

p∈P+
ϵ (x)

(
α(p)

|f(p)|
pσ0

+ ψ0(p)

))s

×
∑

k1+···+ks=m
k1,...,ks∈N

(
m

k1, . . . , ks

)
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=
∑
s≤m

B∗(x)(m−s)/2 1

s!
(o(ϵ−1

√
B∗(x)))s

∑
k1+···+ks=m
k1,...,ks∈N

(
m

k1, . . . , ks

)

≪ ϵB∗(x)m/2.

Combining these estimates completes the proof of (9.3) in the case β ̸= 1.
As mentioned in Section 2, Corollary 2.5 is an immediate consequence

of Theorem 2.4 when f is strongly additive. The transition to the general
additive case is then accomplished by applying the following analogue of [29,
Theorem B]. This is the only place where we need to make use of character-
istic functions.

Lemma 9.1. Let f : N → R be an additive function, and let α ∈ M∗ with
parameters A0, β, σ0, ϑ0, ϱ0, r. Denote by f̃ the strongly additive contraction
of f . Furthermore, suppose that B(x) → ∞ as x → ∞. Then XN (n) :=
(f(n)− A(N))/

√
B(N) admits a limiting distribution function with respect

to the natural probability measure induced by α if and only if X̃N (n) :=
(f̃(n) − A(N))/

√
B(N) does, in which case they share the same limiting

distribution function.

Proof. As before, we shall assume A0 ∈ (0, 1). For each N ∈ N, the
distribution functions of XN (n) and X̃N (n) are given by

ΦN (V ) = S(N)−1
∑
n≤N

XN≤V

α(n), Φ̃N (V ) = S(N)−1
∑
n≤N

X̃N≤V

α(n),

respectively. We have to show that ΦN (V ) converges weakly to a distribution
function as N → ∞ if and only if Φ̃N (V ) does, in which case they converge
weakly to the same limit. Note that the characteristic functions of XN (n)

and X̃N (n) are

φN (t) = S(N)−1
∑
n≤N

α(n)eitXN (n), φ̃N (t) = S(N)−1
∑
n≤N

α(n)eitX̃N (n),

respectively. By Lévy’s continuity theorem [31, Theorem III.2.6], it suffices
to show that

(9.5) lim
N→∞

(φN (t)− φ̃N (t)) = 0

for any given t ∈ R.
To prove this, let us fix t ∈ R and let ϵ ∈ (0, 1/(2|t| + 1)) be arbitrary.

Denote by Jϵ(N) the greatest integer not exceeding
√
N such that |f(n)| ≤

ϵ
√
B(N) for all 1 ≤ n ≤ Jϵ(N). Since B(N) ↗ ∞ as N → ∞, we have

Jϵ(N) ↗ ∞ as N → ∞. By (3.4),
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|φN (t)− φ̃N (t)| ≤ S(N)−1
∑
n≤N

α(n)

∣∣∣∣exp(itf(n)− f̃(n)√
B(N)

)
− 1

∣∣∣∣
= S(N)−1

∑
a≤N

a squareful

α(a)

∣∣∣∣exp(itf(a)− f(Ra)√
B(N)

)
− 1

∣∣∣∣ ∑
b≤N/a

b squarefree
gcd(b,a)=1

α(b)

≪ S(N)−1λαN
σ0

∑
a≤N

a squareful

α(a)

aσ0

(
log

3N

a

)β−1∣∣∣∣exp(itf(a)− f(Ra)√
B(N)

)
− 1

∣∣∣∣.
From (2.1) and (2.3) it follows that

∞∑
a=1

a squareful

α(a)

as
=

∏
p

(
1 +

∑
ν≥2

α(pν)

pνs

)

is absolutely convergent for s ∈ C with ℜ(s) > max(ϱ0, r) + σ0 − 1. Thus

c(δ) :=

∞∑
a=1

a squareful

α(a)

aσ0−δ
=

∏
p

(
1 +

∑
ν≥2

α(pν)

pν(σ0−δ)

)
<∞

for any δ < 1−max(ϱ0, r). Since∣∣∣∣itf(a)− f(Ra)√
B(N)

∣∣∣∣ ≤ 2ϵ|t| < 1

for all a ≤ Jϵ(N), this implies∑
a≤Jϵ(N)
a squareful

α(a)

aσ0

(
log

3N

a

)β−1∣∣∣∣exp(itf(a)− f(Ra)√
B(N)

)
− 1

∣∣∣∣ ≪ ϵ|t|(logN)β−1.

Now fix 0 < δ < 1−max(ϱ0, r). By partial summation we have∑
a≤x

a squareful

α(a)

aσ0
= c(0)−

∞�

x

1

tδ
d

( ∑
a≤t

a squareful

α(a)

aσ0−δ

)
= c(0) + o(x−δ)

when x is sufficiently large. It follows that∑
Jϵ(N)<a≤N
a squareful

α(a)

aσ0

(
log

3N

a

)β−1∣∣∣∣exp(itf(a)− f(Ra)√
B(N)

)
− 1

∣∣∣∣
≤ 2

∑
Jϵ(N)<a≤N
a squareful

α(a)

aσ0

(
log

3N

a

)β−1



54 K. (S.) Fan

= 2

N�

Jϵ(N)

(
log

3N

t

)β−1

d

( ∑
a≤t

a squareful

α(a)

aσ0

)

= o(N−δ) + o((logN)β−1Jϵ(N)−δ) + o

( N�

Jϵ(N)

t−1−δ

(
log

3N

t

)β−2

dt

)
for sufficiently large N . By a change of variable we see that

N�

Jϵ(N)

t−1−δ

(
log

3N

t

)β−2

dt = (3N)−δ

log(3N/Jϵ(N))�

log 3

eδttβ−2 dt

≪ (3N)−δ

(
3N

Jϵ(N)

)δ(
log

3N

Jϵ(N)

)β−2

≪ (logN)β−2Jϵ(N)−δ.

Hence,

∑
Jϵ(N)<a≤N
a squareful

α(a)

aσ0

(
log

3N

a

)β−1∣∣∣∣exp(itf(a)− f(Ra)√
B(N)

)
− 1

∣∣∣∣
= o((logN)β−1Jϵ(N)−δ)

for sufficiently large N . Gathering the above estimates, we obtain

φN (t)− φ̃N (t) ≪ ϵ|t|+ o(Jϵ(N)−δ)

for sufficiently large N , where the implicit constants are independent of t, ϵ
and N . From this estimate we infer that

lim sup
N→∞

|φN (t)− φ̃N (t)| = O(ϵ|t|),

where the implicit constant is independent of t and ϵ. As ϵ ∈ (0, 1/(2|t|+1))
is arbitrary, we obtain (9.5) as desired.

Remark 9.1. Let α(n) = τ(n)2/n11, where τ is Ramanujan’s τ -function,
and define the additive function f(n) by f(pν) = log

√
α(pν) if α(pν) ̸= 0

and f(pν) = 0 otherwise, where pν is any prime power. Then α(n) satisfies
conditions (2.1)–(2.4) with any fixed A0 > 0, β = 1, σ0 = 1, ϑ0 = 0, and
any fixed ϱ0 ∈ (0, 1) and r ∈ (1/2, 1). Moreover, α(n) ≤ d(n)2 by Deligne’s
bound [9]. As alluded to in Section 2, Elliott [12] showed, using ideas from
probability theory, that the limiting distribution of (f(n) − A(x))/

√
B(x)

with respect to the natural probability measure induced by α is the standard
Gaussian distribution. In fact, we can derive his result from Corollary 2.5
in combination with Lemma 9.1 and [12, Lemma 7] without difficulty. In
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comparison to Elliott’s probabilistic approach, our approach enables us to
get around some of the complications resulting from the analysis of τ(n).

To illustrate this, let us consider the strongly additive function f0(n)
defined by f0(p) = log

√
α(p) if p /∈ E0 and f0(p) = 0 otherwise, where

E0 := {p > 2: α(p) ≤ exp(−2 3
√
log log p)}. Denote by A0(x) and B0(x),

respectively, the expected mean and variance of f0(n) weighted by α(n). It
can be shown [12, Lemma 7] that B(x) ≍ log log x. Since t|log t| ≤

√
t for all

t ∈ [0, 1], we have∑
p≤x
p∈E0

α(p)
|f(p)|
p

≤
∑
p≤x
p∈E0

√
α(p)

p
≤

∑
p>2

1

p
exp

(
− 3
√

log log p
)
<∞.

It follows that A0(x) = A(x)+O(1). A similar argument shows that B0(x) =
B(x) + O(1) ≍ log log x. Thus, f0(p) = O(B0(p)

1/3) for all p, which shows
that f0(n) satisfies the hypotheses in Corollary 2.5. Hence, the limiting dis-
tribution of (f0(n) − A(x))/

√
B(x) with respect to the natural probability

measure induced by α is the standard Gaussian distribution.
To complete our argument, let f̃ be the strongly additive contraction

of f . Then f0(n) ≥ f̃(n) for all n ∈ N. Moreover, Deligne’s bound and the
fact that τ(n) ∈ Z for all n ∈ N imply that −(11 log p)/2 ≤ f(p) ≤ log 2
whenever α(p) ̸= 0. Since∑

ν≥1

α(pν)

pν
≤ α(p)

p
+
∑
ν≥2

(ν + 1)2

pν
=
α(p)

p
+O

(
1

p2

)
,

we have

S(x)−1
∑
n≤x

α(n)(f0(n)− f̃(n)) = S(x)−1
∑
p≤x
p∈E0

|f(p)|
∑
n≤x
p|n

α(n)

= S(x)−1
∑
p≤x
p∈E0

|f(p)|
∑
ν≥1

α(pν)
∑

n′≤x/pν

p∤n′

α(n′)

≪ S(x)−1λαx
∑
p≤x
p∈E0

|f(p)|
∑
ν≥1

α(pν)

pν

≪
∑
p≤x
p∈E0

α(p)
|f(p)|
p

+O

(∑
p>2

log p

p2

)
≪ 1.

This estimate is sufficient for us to conclude that the limiting distribution
of (f̃(n) − A(x))/

√
B(x) with respect to the natural probability measure

induced by α is also the standard Gaussian distribution. By Lemma 9.1, the
same is true for (f(n)−A(x))/

√
B(x).
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10. Concluding remarks. Although in the present paper we only fo-
cused on the subclass M∗ of multiplicative functions, it is also of interest
to consider weight functions α(n) which satisfy certain Landau–Selberg–
Delange type conditions. Given more information about α(n) and its asso-
ciated Dirichlet series F (s) =

∑∞
n=1 α(n)n

−s, better results are obtainable
in some circumstances. Below we give a brief description of the method in
the special case where F (s) is close to an integral power of the Riemann
zeta-function ζ(s).

For s ∈ C, we write σ = ℜ(s) and t = ℑ(s). Let α : N → R≥0 be
a multiplicative function whose Dirichlet series F (s) =

∑∞
n=1 α(n)n

−s is
absolutely convergent for s ∈ C with σ > σ0, where σ0 > 0 is constant.
Suppose that there exist constants β ∈ N, 0 < ϑ0 < σ0, B > 0 and 0 < δ < 1
such that Hβ(s) := F (s)ζ(s− σ0 + 1)−β has an analytic continuation in the
half-plane σ ≥ ϑ0 with

lim
s→σ0

F (s)(s− σ0)
β > 0,

and such that |Hβ(s)| ≤ B(1 + |t|)1−δ for all s ∈ C with σ ≥ ϑ0. It is clear
that F (s) has (absolute) abscissa of convergence σ0. Adapting the argument
used in the proof of [24, Lemma 2.1] or [31, Theorem II.5.2], one can show
that there exists some constant ϵ0 > 0 such that

S(x) =
1

σ0
Ress=σ0

(
F (s)xs

s− σ0 + 1

)
(10.1)

− xσ0(log x)β−1
β−1∑
k=1

k−1∑
j=0

cj,k
µj(β)

(log x)k
+O(Bxϑ)

uniformly for all x ≥ 3 and ϑ ∈ (σ0 − ϵ0, σ0), where

µk(β) :=
1

k!
· d

k

dsk

(
F (s)(s− σ0)

β

s− σ0 + 1

)∣∣∣∣
s=σ0

, cj,k :=
(−1)k−j(σ0 − 1)

(β − k − 1)!σk−j+1
0

,

and the implicit constant in the error term depends at most on β, σ0, ϑ0, δ, ϵ0.
Notably, one gains an asymptotic for S(x) with a power-saving error term
uniformly in B, in contrast to what is provided by (3.4). Furthermore, sup-
pose that there exists a constant λ > 0 such that α(pν) = O((λpσ0−1)ν) for
all prime powers pν . Let

F (s, a) :=
∏
p|a

(
1−

( ∞∑
ν=0

α(pν)p−νs
)−1)

for s ∈ C with σ ≥ ϑ0 and squarefree a ∈ N. When s = σ0, this definition
coincides with the one introduced in Lemma 3.3. As in the proof of that
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lemma, it is not hard to show that

(10.2) F (s, p) =
α(p)

ps
+O

(
α(p)2

p2σ
+

1

p2(σ−σ0+1)

)
for all s ∈ C with σ ≥ ϑ0 and all sufficiently large p. In addition,

∞∑
n=1
a|n

α(n)

ns
=

(∏
p∤a

∞∑
ν=0

α(pν)p−νs
)(∏

p|a

∞∑
ν=1

α(pν)p−νs
)

= F (s)
(∏
p|a

∞∑
ν=0

α(pν)p−νs
)−1(∏

p|a

∞∑
ν=1

α(pν)p−νs
)
= F (s)F (s, a)

for s ∈ C with σ > σ0 and squarefree a ∈ N. Applying (10.1) to the above
Dirichlet series expansion of F (s)F (s, a) and using (10.2) to obtain upper
bounds for Hβ(s)F (s, a) uniformly in σ ≥ ϑ0, we see that there exist con-
stants ϵ ∈ (0, 1), Q0 ≥ 2 and dj,k ∈ R, where 0 ≤ j < k < β, such that∑

n≤x
a|n

α(n) =
µ0(β)F (σ0, a)

(β − 1)!σ0
xσ0(log x)β−1(10.3)

+ xσ0(log x)β−1
β−1∑
k=1

k∑
j=0

dj,k
F (j)(σ0, a)

(log x)k

+O(B2O(ω(a))aσ0−1(x/a)ϑ)

uniformly for all x ≥ 3, ϑ ∈ (σ0 − ϵ, σ0) and squarefree a ∈ N with P−(a)
> Q0, where F (j)(σ0, a) is the jth order derivative of F (s, a) with respect to s
evaluated at s = σ0. Again, one may compare this result with Lemma 3.3.

Now, if f : N → R is a strongly additive function with |f(p)| ≤M for all
primes p, where M > 0 is constant, and if 0 < h0 < (3/2)2/3 is fixed but
arbitrary, then by using (10.3) as a substitute for Lemma 3.3 and arguing as
before with the technique of [24, Section 4.2], we deduce that

M(x;m) = CmB(x)m/2

(
χm +O

(
m3/2√
B(x)

))
uniformly for all sufficiently large x and all 1 ≤ m ≤ h0(B(x)/M2)1/3,
provided that B(x) → ∞ as x→ ∞. Analogously, let f : N → R be strongly
additive such that f(p) = O(

√
B(p)) for all primes p, B(x) → ∞ as x→ ∞,

and ∑
p≤x

|f(p)|>ϵ
√

B(x)

α(p)
f(p)2

p
= o(B(x))

for any given ϵ > 0. Then M(x;m) = (µm + o(1))B(x)m/2 for every fixed
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m ∈ N. These results supplement Theorems 2.1 and 2.4. It may be worth
pointing out that in the proofs of these results one can simply take z = x1/v

with v being a suitable constant multiple of m. We invite the reader to fill
in the details.

One of the key ingredients in the proof of Theorem 2.1 is an asymptotic
formula for ∑

n≤x
d|n

α(n),

which is provided by Lemma 3.3. More generally, let A(x) = {an}n≤x be a
nondecreasing sequence of positive integers, and suppose that

(10.4) Ad,α(x) :=
∑
n≤x
d|an

α(n) = ρ(d)S(x) + rd(x)

for squarefree integers d ∈ N, where ρ : N → [0, 1] is a multiplicative function,
and rd(x) is a remainder term which is expected to be small for all d or
small on average over d. Here, ρ(d) can be viewed as the density of the set
{n ∈ N : d | an} with respect to the probability measure induced by α. In this
sieve-theoretic setting one can derive, without much difficulty, an analogue
of [17, Proposition 4]. It may be of interest to determine if such an analogue
can be used to obtain general weighted Erdős–Kac theorems for various
interesting sequences {an} studied relatively recently, including g(pn), φ(n),
the Carmichael function λ(n), and the aliquot sum s(n) := σ(n)− n, where
g ∈ Z[x] is an irreducible polynomial, pn is the nth prime, and λ(n) denotes
the exponent of (Z/nZ)× (see [20, 14, 16, 27]). The same approach may also
be adapted to prove results of weighted Erdős–Kac type for short intervals
as well as in the function field setting. We hope to return to these and other
related problems in the future.
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