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Abstract. By adapting the moment method developed by Granville and Soundarara-
jan (2007), Khan, Milinovich and Subedi (2022) obtained a weighted version of the Erdés—
Kac theorem for w(n) with multiplicative weight dj(n), where w(n) denotes the number
of distinct prime divisors of a positive integer n, and di(n) is the k-fold divisor function
with £ € N. In the present paper, we generalize their method to study the distribution
of additive functions f(n) weighted by nonnegative multiplicative functions a(n) in a
wide class. In particular, we establish uniform asymptotic formulas for the moments of
f(n) with suitable growth rates. We also prove a qualitative result on the moments which
extends a theorem of Delange and Halberstam (1957). As a consequence, we obtain a
weighted analogue of the Kubilius—Shapiro theorem.
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1. Introduction. The celebrated Erdés—Kac theorem, first proved by
Erdés and Kac [I5] in 1940, states that if w(n) denotes the number of distinct
prime divisors of a positive integer n, then

! w(n) —loglogn
1.1 lim — - <z V=0V
(1.1) 00 1 #{n =7 loglogn  — V)

2020 Mathematics Subject Classification: Primary 11N60; Secondary 11K65, 11N37.

Key words and phrases: Erdés—Kac theorem, Gaussian distribution, method of moments,
mean values of multiplicative functions.

Received 14 October 2023; revised 29 July 2024.

Published online *.

DOI: 10.4064/2a231014-9-8 [1] © Instytut Matematyczny PAN, ***



2 K. (S.) Fan

for any given V' € R, where
1 14 —v2/2

B(V) = or- | e dv
is the cumulative distribution function of the standard Gaussian distribution.
This statistical result is a direct upgrade of an earlier theorem of Hardy and
Ramanujan on the normal order of w (see [21] and [22, Theorem 431]), which
asserts that given any € > 0, the inequality |w(n) — loglogn| < eloglogn
holds for all but o(x) values of n < z. In fact, Erdés and Kac proved in
the same paper a more general result in which the function w is replaced
by any strongly additive function f that is bounded on primes and admits
an unbounded “variance” }° _, f (p)?/p. Recall that an arithmetic function
f: N — C is additive if f(mn) = f(m) + f(n) for all positive integers
m,n € N with ged(m,n) = 1, and it is strongly additive if it also satisfies
f(®”) = f(p) for all prime powers p”. Thus, strongly additive functions
are completely determined by their values at primes, which makes them a
particularly nice subclass of additive functions. In fact, it can be shown that
also holds for 2(n) in place of w(n), where £2(n) denotes the total
number of prime factors of n, counting multiplicity, by exploiting the fact
that w and its cousin {2 do not differ very much on average:
(1.2) Z (2(n) —w(n)) = O(x).

n<lz

The original proof of the Erdés—Kac theorem combines the central
limit theorem with Brun’s sieve and is quite complicated. Later, LeVeque
[25, Theorem 1| introduced some modifications and obtained a quantitative
version of with a rate of convergence O(logloglog x/+/loglog x). Using
a deep analytic approach, Rényi and Turén [28] improved upon LeVeque’s
result with a rate of convergence O(1/+/loglogx), which is best possible
in the sense that it cannot be improved to o(1/+y/loglogx) without loss of
uniformity in V.

A third approach to , first suggested by Kac [23], examines the mo-
ments of w. In probability theory, the moments of a random variable X often
provide valuable information about its distribution. For example, an appli-
cation of Markov’s inequality yields P(|X| > ¢) < E|X|¥/c*. Given all the
moments E|X|* < oo, one may select k that minimizes this tail estimate. If
X happens to obey a Gaussian law, then it is completely determined by its
moments, a direct consequence of |3, Theorem 30.1] or [10, Theorem 3.3.26].
Consequently, by [3] Theorem 30.2|, one reduces the proof of to that
of the asymptotic formula

(13) 3 () ~logloga)™ = (jn + o(1))(loglog )"/

n<z
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for every m € N. Here p,, is the mth moment of a standard Gaussian
distribution given by

m!/m!l if 2|m,
Hm = .
0 otherwise.

The case m = 1 follows from Mertens’ second theorem [22] Theorem 427],
and the case m = 2 was settled by Turan [34]. Early proofs of for
all k are due to Delange [6] in 1953 and Halberstam [I§] in 1955, both
of which are very complicated. Later, Delange [7] provided an elementary
proof of for strongly additive functions. Halberstam’s proof was also
simplified and rendered more transparent by Billingsley [2] in 1969. In 2007,
Granville and Soundararajan [17] derived asymptotic formulas for the mo-
ments which hold uniformly in the range m < (loglog x)1/3. Their method,
which may be viewed to some extent as a clever and efficient repacking of
Billingsley’s, is so flexible that it can be modified to study the distribu-
tion of values of additive functions in a rather general sieve-theoretic frame-
work.

More generally, one can study the distribution of values of w(n) weighted
by certain nonnegative multiplicative functions «(n). For instance, Elliott
[13] showed, based on the Landau-Selberg-Delange method, that

lim. (Z d(n)c)_l 3 d(n)° = &(V)

n<lx n<lx
w(n)<2¢loglog x+V+/2¢loglog =

for any given ¢ € R and V € R, where d(n) denotes the number of pos-
itive divisors of n. Building on the method of Granville and Soundarara-
jan, Khan, Milinovich and Subedi [24] recently proved an analogue for the
weight di(n) with mean kloglogz and variance kloglog x, where di(n) :=
#{(a1,...,ax) € N¥:ay---ap = n}. There is now a vast literature on
weighted versions of the Erdés—Kac theorem with general weights, includ-
ing the early work of Alladi [I] and the more recent works of Elboim and
Gorodetsky [11] and Tenenbaum [32] [33]. Alladi made use of Halberstam’s
approach to prove weighted Erdés—Kac type results for strongly additive
functions with the weights being the characteristic functions of the subsets
of N which satisfy certain sieve type conditions. On nonnegattive multi-
plicative weights «, Elboim and Gorodetsky [11, Theorem 1.1] generalized
Billingsley’s proof [2] to handle the distribution of £2(n) weighted by those «
having constant mean values and satisfying certain growth conditions, while
Tenenbaum’s result |32, Corollary 2.5] was proved by means of character-
sitic functions and allows for general additive functions and a large class of
multiplicative weights a with the property that a(p) = O(p°°~!) for some
constant og > 0.
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The main purpose of this paper is to establish weighted versions of the
Erdés—Kac theorem by pushing the method of moments of Granville and
Soundararajan to its limit. Our work is the first to apply this method to
prove weighted Erd&s—Kac theorems with general additive functions and
multiplicative weights. We obtain uniform estimates for moments of strength
comparable to that of the original estimate of Granville and Soundararajan
for w(n). With our emphasis on the strength of the method, we have refrained
from pursuing the most general theorems at the risk of complicating our
exposition. Despite this compromise, our results have some advantages over
the results in [111 32} [33]. Our approach is elementary and flexible, and it can
be applied to handle certain arithmetic functions of special interest which
were studied previously by different methods. Some examples are discussed
in the comment below Corollary

Definitions and notation. We introduce some terminology and nota-
tion that will be adopted throughout this paper without further clarification.
Given any real- or complex-valued functions f(z) and g(z) with a common
domain D C R, we shall use Landau’s big-O notation f(z) = O(g(x)) and
Vinogradov’s notation f(x) < g(x) interchangeably to mean that there ex-
ists an absolute constant C' > 0 such that |f(z)| < Clg(z)| for all z € D.
Likewise, we shall use the notation f(z) > g(z) interchangeably with g(z) =
O(f(z)). If f(z) = O(g(x)) and g(z) = O(f(x)) hold simultaneously, then
we adopt the shorthand notation f(z) < g(z). If D contains a neighborhood
of oo, then we write f(z) = o(g(x)) when f(x)/g(x) — 0 as x — oo and
f(x) ~ g(x) when f(z)/g(x) — 1 as x — oco. We shall occasionally make
use of the characteristic function €, of the condition a # b for any a,b € R.
Equivalently, €, = 1 — 045, where d, 5 is the Kronecker delta function.

Throughout, the letter p denotes a prime, and we write m(z) for the
prime counting function, namely, 7(x) = Zp<$ 1. For any = € R, we write
|z] for the integer part of x, and [z] for the least integer > xz. For every
n € N, denote by P~ (n) and P*(n) the least and the greatest prime factor
of n, respectively, with the convention that P~ (1) = oo and P*(1) = 1. We
say that n € Z\ {0} is squareful if for any prime p|n one has p?|n. Given
any prime power p¥, the relation p” |n means that p¥|n but p**! { n. In
addition, we denote by R,, the radical of n, i.e., R, := rad(n) = Hp|np.

m!

Finally, we write (m1 mmk) = for the multinomial coefficient of

shape (my,...,mg) of size m = mqy + -+ + my.

2. Main results. The weights a: N — R>( that we shall consider in
this paper form a nice subclass M™ of nonnegative multiplicative functions,
nice in the sense that there exist constants Ag, 3,00 > 0, 99 > 0, 0o € [0, 1)
and r € (0,1) such that
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(2.1) a(p’) < pleotoo—lv,
a(p)logp T
(2.2) gpaol = 5”O<(1ogx)flo>’
[ ap)? a(p”)
(23) Z <p2(7“+00—1) + Z p(T‘-‘rU()—].)V < 0,
p v>2

Z va(p?) < (loglog(p + 1))

(2.4) o p

v>1
where the sum Z; is over all but finitely many primes p. It is not hard to
verify that M™ is closed under Dirichlet convolution. Despite some overlaps
between our class M* and the class of multiplicative functions studied by
Elboim and Gorodetsky [11]], neither of them strictly contains the other. On
the one hand, the multiplicative function « defined by a(p) = 1 for all primes
pand a(p¥) = p*/? for all prime powers p” with v > 2 falls into M* but is not
covered by the first part of [I1, Theorem 1.1]. On the other hand, implies
the more restrictive growth condition a(p)/p”~! < (loglog(p+1))?°, which
is not required in |11, Theorem 1.1].

The class M* contains many familiar multiplicative functions, including
the r-fold divisor function d(n) for £ > 0, the sum-of-divisors function o (n)
for A > —1, Euler’s totient function ¢(n), the characteristic function yu(n)?
of squarefree numbers, and the function ra(n)/4, where u(n) is the Mébius
function and r9(n) := #{(a,b) € Z*: n = a® + b*}. Less obvious examples
include py(n), which denotes the number of zeros in Z/nZ of a nonconstant
irreducible polynomial g € Z[z]|, and Ramanujan’s 7-function 7(n), which
may be defined as the nth Fourier coefficient of the modular discriminant.
We leave the verification of these claims to the interested reader.

Let o € M* with parameters Ay, 5, 0g, %, 09,7 and set

S(x) = Salx) 1= a(n).
n<x
For any additive function f: N — R, define

A(x) = Ay f(x) := Za(p)@, B(x) = Baf(x) := > _a(p)

70
p<z p p<z

f(p)?
poo

One may think of n as a random variable defined on the sample space NN[1, x]
with the natural probability measure induced by «, that is, Prob(n = k) =
a(k)/S(z) for every k € NN[1, z]. We shall show, by estimating the weighted
mth moment defined by

M (a;m) = My, g(x;m) := S(a) ™" Y a(n)(f(n) — Ax)™

n<x
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for every m € N, that for certain additive functions f, the limiting distri-
bution of the normalization (f(n)— A(z))/+/B(x) is standard Gaussian. To
state our results in a coherent manner, we set x, := (1 + (—1)")/2, the
characteristic function of even integers, and

m!
Cp =
2m/20(m /2 + 1)

for m € N, where I" is the Gamma function. One quickly notes that C), =
tm = (m — 1! for m even. The numbers C), play a nonnegligible role in
the error terms of our uniform estimates for M (x;m). Our first result is the
following theorem.

THEOREM 2.1. Let f: N — R be a strongly additive function with |f(p)|
< M for all p, where M > 0 is constant, and let o € M* with parameters

Ao, B,00,90,00,7. If 6 = 1 and 0 < hg < (3/2)%/3 is arbitrary, and if
B(xz) — 00 as x — oo, then
3/2
M (z;m) = Cpy B(z)™? (Xm - O(Mm ))
B(z)
uniformly for all sufficiently large x and all 1 < m < ho(B(x)/M?)'/3. If
B # 1 and if B(z)/(logloglogx)? — 0o as x — oo, then
Mm?/? logloglog:c)>
B(z)

M (z;m) = CynB(z)™/? (Xm + o(

uniformly for all sufficiently large © and all
1 < m < B(z)"?/(logloglog z)*/3.

The implicit constants in the error terms of both asymptotic formulas above
depend at most on the explicit and implicit constants in the hypotheses except

for M.

REMARK 2.1. It may be worth pointing out that in the same way as in
Theorem [2.1], the implicit constants in the estimates appearing in the rest
of the paper depend at most on the explicit and implicit constants in the
hypotheses unless stated otherwise.

In the case where @« = 1 and f = w, we recover [I7, Theorem 1] with
a slightly wider range 1 < m < hg(loglog x)l/?’ compared to the original
range 1 < m < (loglog x)'/3. Though Theoremis formulated for strongly
additive functions, similar things can be said about additive functions whose
values at prime powers do not grow too rapidly and are hence not expected
to contribute very much. A simple example of such functions is £2(n). Since
Q2(p”) = v for all p”, one can show, by establishing a weighted version
of (L.2), that £2(n) does not differ from its cousin w(n) very much for most
values of n, and so they are expected to have the same distribution. More
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generally, we shall prove the following variant of Theorem for additive
functions. For simplicity, we shall focus on a subclass of the multiplicative
functions in M*.

THEOREM 2.2. Let f: N — R be an additive function such that f(p") <
Mv*® for all prime powers p¥, where M > 0 and x > 0 are constant. Let
a: N = R>g be a multiplicative function, and suppose that there exist con-
stants Ag, 8,00 > 0, 99 > 0, 0o € [0,1/2) and X € (0,2172¢0) such that

a(n) satisfies (2.2), , and the condition that a(p”) = O((Ap2too—1)¥)
for all prime powers p’. If 6 =1 and 0 < ho < (3/2)*/3 is arbitrary, and if
B(x) — 00 as x — oo, then

M (z;m) = Cp, B(z)™/? <Xm + o(%))
uniformly for all sufficiently large x and all m € N satisfying

m < ho(B(z)/M)Y?  and m < B(z)/+3),
If B+# 1 and if B(x)/(logloglogz)? — 0o as x — 0o, then we have

Mm3/?(logloglog x + m") > )
B(x)

M (z;m) = Cp B(z)™? <Xm + O(
uniformly for all sufficiently large x and all

1/3
1<m< min<B(m)1/(2”+3), 0 lB(xl) / )2/3>.
ogloglog

The implicit constants in both asymptotic formulas above depend at most on
the explicit and tmplicit constants in the hypotheses except for M.

It is easy to see that if a(p”) = O((A\p™T?0~1)¥) for all prime pow-
ers p¥, where o9 > 0, 79 € [0,1/2) and X € (0,2'727) are given constants,
then conditions and are automatically fulfilled with any fixed
max(rg + logg A, 0) < g9 < 1, 79 + max(1/2,1logs A) < r < 1, and the same
parameter og. Indeed, we shall derive Theorem [2.2] as a corollary of Theo-
rem 211

Let g € Z[z] be a nonconstant irreducible polynomial, and recall that for
every n € N, pg(n) denotes the number of zeros of g in Z/nZ. More generally,
if ¢ € Q[z] is a nonconstant irreducible polynomial, we may extend the
definition above by setting py(n) = 0 if ged(n,¢q) > 1, where ¢, € N is the
least positive integer such that c,g(z) € Z[x], and insisting that py(n) be the
number of zeros of g(z) (or equivalently, cyg(x)) in Z/nZ when ged(n, ¢g) =1.
Extended this way with the convention that py(1) = 1, the function p4(n)
remains multiplicative. By [20, Lemma 1|, p, is bounded on prime powers



8 K. (S.) Fan

and satisfies

Zpg(p) = loglogx + M,, —|—O( ! )

P log

Given a strongly additive function f: N — R, we define

2
Apl@) = X oI By = 0

p

p<z p<z

For simplicity, suppose that g(N) C N. In the case g € Z[x], Halberstam
[19, Theorem 3| showed that if Byg(x) — oo as x — oo, and if f(p) =

o(\/By.4(p)) then given m € N,

1 m m
- D (flg(n) = A g(@)™ = (tm + o(1)) By g ()™,
n<x
Under the stronger condition f(p) = O(1), Theorem [2.1]leads to a weighted
version of this result in the case g(n) = n. The remaining cases are captured
by the following theorem.

THEOREM 2.3. Let f: N — R be a strongly additive function with |f(p)|
< M for all p, where M > 0 is constant, and let g € Q[z] be a nonconstant
irreducible polynomial such that g(0) # 0 and g(N) C N. Let o« € M* with
parameters Ay, B, 00,90, 00,7, and fix 0 < hg < (3/2)*? and h{, > 0. For
any q € N and a € Z coprime to q, define

1
Ag(wig,a) = > an)—— Y. aln).
n<z n<z
n=a (mod q) ged(n,g)=1
If there exist a constant €9 > 0 and a function §(z) € (0,1] with §(z)?By 4(x)
— 00 as x — oo such that

(2.5) oo w@? Y [Aa(wig.a)l

gw(g)<m a€2s(q)
Pt (g)<a®@)/m < S(z) exp(—(loglog z)'/3+)

uniformly for all sufficiently large x and all

(2.6) 1 < m < min(hg(By4(z)/M*)Y3 hy(5(x)? By g(x)/M?)'/3),

(*) Halberstam [I9] wrote that for g(x) = z this pair of conditions contain the con-
dition that f(p) = o((logp)®) for every given ¢ > 0. However, this claim is incorrect. In
fact, a simple counterexample may be constructed as follows. Let P be an arbitrary infi-
nite subset of odd primes such that > _,1/p < oo, and put P(z) := P N [3,z]. Define
f(p) = Vloglogp for p € P and f(p) = 1 for p ¢ P. From partial summation it follows
that >0 () f(p)?/p = o(loglog z). Then one sees readily that f(p) = o((logp)¢) for any

given € > 0, while f(p) ~ /B(p) for large p € P.
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where Z;(q) := {n € (Z/qZ)*: g(n) = 0(mod q)} is the zero locus of g in
(Z/qZ)*, then

S(@)™1 Y aln)(fg(n) — Ag ()™

ns = C B g(2)™? (X’” o (‘m»

uniformly for all sufficiently large x and all m € N in the same range (12.6),

where the implicit constant depends at most on the explicit and implicit con-
stants in the hypotheses except for M.

Theorem is applicable to a large class of nonnegative multiplication
functions a(n), including di(n) for k € N and ra(n)/4 (see |4, 26]). Despite
the great generality of , it is oftentimes more convenient to work with
the stronger variant

2.7 2 max |As(z;q,a
(27) Z( #@pe(a) max |Aa(xig,0)
q<z®®)
w(q)<(6(x)? loglog z)'/3 < S(x) exp(—(loglog x)1/3+eo).

This condition may be viewed as an inequality of the Bombieri—Vinogradov
type, which ensures that the values of a(n) are well distributed as n varies
over the reduced residue classes a (mod ¢) for most values of g and a. In view
of [I7, Proposition 4], such a condition arises naturally from a sieving process
for the sequence {g(n)},>1. For this process to work, we need information
about the average size of a(n) subject to the constraint d | g(n) for smooth
squarefree d € NN [1,2%). If d is also free of small prime factors up to some
constant depending on g, then this constraint amounts to the congruences
n = a (mod d) for a € Z;(d). So, (2.7) reduces the sieving of {g(n)}n>1 to
that of N.

We shall only sketch the proof of Theorem since it is similar to, and
in fact much easier than, that of Theorem The argument used in the
proof may also be modified to study the joint distribution of f(n + h;) and
f(n+ hg) with any fixed integers hy # ha.

It is not hard to see that the condition f(p) = O(1) in Theorem [2.1
can be relaxed, especially when we do not pursue uniformity in m in the
asymptotics for the mth moment. For instance, in the case a = 1 Delange
and Halberstam showed [8, Theorem 1] that if f: N — R is a strongly
additive function such that B(x) — oo as x — oo, f(p) = O(+/B(p)) for all
primes p, and

2
258) S IO )

p<z

|f(p)[>ey/B(x)
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for any given € > 0, then

LS~ A@)™ = (o + 0(1) Bla)™?
n<x

for every fixed m € N. The implication of this result on the distribution of
f is slightly weaker than the Kubilius—Shapiro theorem [29, Theorem A] in
that the latter asserts that the distribution of an additive function f: N — R
with an unbounded variance B(z) which satisfies for every given € > 0
is necessarily Gaussian with mean A(x) and variance B(x). On the other
hand, Delange and Halberstam noted that their result no longer holds if one
removes the assumption f(p) = O(y/B(p)), which incidentally exposes the
limitation of the method of moments compared to the method developed by
Erdés and Kac. Regardless, it will be clear in the sequel that the proof of
Theorem 2.1 makes it possible for us to obtain the following natural extension
of the result of Delange and Halberstam.

THEOREM 2.4. Let f: N — R be a strongly additive function, and let
a € M* with parameters Ag, 8, 00,90, 00, 7. Define

e {B<x>/<logloglogx>2 B#1

and suppose B*(x) — oo as x — oo. If there exists a constant K > 0 such
that f(n) = o(y/B(x)) for all squarefree n € NN [1,z] composed of prime

factors p with | f(p)| > K+/B*(z), and if
f? _ o
Y. a) o(B*(z))

poe

p<z
|f(p)|>e/B*(z)
for any given € > 0, then M(z;m) = (pm + o(1))B(z)™/? for every fized
m € N.
The proof of Theorem [2:4] which we shall only outline, is based on the

proofs of Theorem and [8, Theorem 1|. We shall also obtain as a corollary
the following analogue of the Kubilius—Shapiro theorem [29, Theorem C].

COROLLARY 2.5. Under the notation and hypotheses of Theorem [2.4]

lim_ S(z)~! > a(n) = d(V)

f(n)<A(z)+Vy/B(z)
for any given V€ R. The same is true if f is merely additive.
It is clear that Theorem implies Corollary when f is strongly

additive. To handle the general case where f is merely additive, we shall
establish a weighted version of [29, Theorem B| which shows that when it
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comes to the distribution problem, there is no essential difference between
strongly additive functions and general additive functions, and thus the dis-
tribution of an additive function f is determined solely by its values at
primes.

Corollary [2.5] has many interesting applications. For instance, it im-
plies at once that if h: N — R is any completely additive function, i.e.,
h(mn) = h(m) + h(n) for all m,n € N, and if ¥ > 1 is a positive inte-
ger, then the distribution of h(dk(n)) weighted by a(n) is Gaussian with
mean h(k)Bloglogz and variance h(k)?Bloglogx, provided h(k) # 0. In
[12] Elliott proved a weighted Erdés—Kac theorem concerning Ramanujan’s
7-function. In Remark [0.1] we describe how his result may be derived from
Corollary Analogues on elliptic holomorphic newforms of weight at
least 2 can be obtained in the same way. In a similar fashion, one can also
show that if the weight a in Corollary satisfies the additional condi-
tion ap) ~ Bp?®~! for all but a subset E of primes p, where #(E N [2,x])
= o(z(loglog z)>~% /(logx)?) as  — oo, then the distribution of £2(p(n))
weighted by «(n) is Gaussian with mean B(loglogz)?/2 and variance
B(loglog x)3 /3, generalizing an old result of Erdés and Pomerance |16, The-
orem 3.1] in an easy manner.

REMARK 2.2. The condition that f(p) = o((logp)¢) for any given € > 0,
mentioned by Halberstam [19], does not imply (2.8)) in general. To see this,
assume for the moment that there exists an infinite subset P of primes such
that

(2.9) spla)i= 3 1_ logloex o)

pePOT.a] p logloglogx

for sufficiently large =, where ¢ € R is some constant. Next, define f(p)
(log p)Y/(2legloglogp) for p € P and f(p) = 1 for p ¢ P. Clearly, f(p)
o((log p)©) for any given € > 0. It is easily seen by partial summation that

f(p)2 _ R 1/logloglog ¢ _ 1/loglog log x
S L2 og) dsp(t) = (1+o(1))(log ) ,

peEPN[17,2] p 17—

which implies that
. f(p)2 _ 1/logloglog x
B(z)= Y 2 +0(loglogz) = (1+0(1))(logx) .
pEPN[17,x]
Let y = z!/1°81°8% and ¢ = 1/2. Since

loglogy = loglogx — logloglog x,
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1
logloglogy = (1 4+ O ——— | ] logloglog z,
loglog x

we have

(logy)l/logloglogy = exp loglogw —140 1 )
log log log x log log log x

It follows that
f(p)2 > (logy)l/logloglogy > %(logzv)l/logloglogac > GQB(IE)

for p € PN (y, 2] when z is sufficiently large. Hence,
2 2 1 1
Z f(p) > Z f(ﬁ) > 5(logl,)l/logloglogm > *B(l‘)

3
p<z p PEPN(y,z]

|f(p)|>ey/ B(x)

It remains to construct a set P with the desired property . The fol-
lowing inductive approach was suggested by Prof. Pomerance. Note first
that Zpgx 1/p = loglogx + O(1) grows slightly faster than our target
u(z) := loglogxz/logloglogx, according to Mertens’ second theorem [22]
Theorem 427]. Moreover, if p < p’ are large consecutive primes, then
u(p’) —u(p) = o(1/logp), by Bertrand’s postulate. Let 17 be the first prime
in P. Suppose that we have already selected for P the primes up to g, where
q is prime. We put the next prime ¢’ in P if sp(q) < u(q) and leave it out
otherwise. Then the running sum sp(z) changes by at most 1/¢q as x moves
from ¢ to ¢/, while the target u(z) changes by at most o(1/log q) as x moves
from ¢ to ¢’. Thus, the difference sp(z) —u(z) can be kept within o(1/log x).
In particular, holds for P with ¢ = 0.

Overview of the proof of Theorem Before embarking on the
proofs of our results, we briefly describe the main steps in the proof of
Theorem [2.1I] The starting point is an approximation to moments used by
Granville, Soundararajan, Khan, Milinovich and Subedi. Though the under-
lying idea is the same, we need a more complicated version of this approxi-
mation (see Lemma due to the more general nature of our multiplicative
weights «. To utilize it, we first need to develop an asymptotic formula for
the mean value of a(n) with n < z restricted to the multiples of a squarefree
integer @ € NN [1, z] (see Lemma[3.3). An important feature of this formula
is that it holds uniformly for all squarefree integers a € NN [1, ], which is
key to both applying the moment approximation and making the moment
estimates uniform. This formula will serve as a substitute for the one on
dy, developed by Khan, Milinovich and Subedi. Unlike their proof, which is
based on Perron’s formula and the complete submultiplicativity of dj, our
proof uses the mean value estimate for a supplied by [5, Theorem 2.1] and
is completely elementary. It is carried out in the next section.



Weighted Erdds—Kac theorems 13

After applying the moment approximation, we find that the estimation
of the main contribution can be worked out as in [I7, 24]. It is the esti-
mation of the error terms that is more involved in our case. In particular,
the estimation of the error term in the moment approximation provided by
Lemma requires separate treatments of 5 = 1 and S # 1. Moreover,
since the error term in our asymptotic formula for the mean value of a(n)
over a|n supplied by Lemma is weaker than what one can obtain for
the special weight dj(n) by complex-analytic approaches, we need to handle
the case § € (0,1) with some special care and make a careful selection of
parameters accordingly in order to minimize the error terms. With these
new technicalities taken care of, we obtain the desired uniform estimates for
moments stated in Theorem 2.1

3. Mean values of multiplicative functions. Without loss of gener-
ality, we may assume Aj € (0,1). In addition, we shall also make use of the
asymptotic formula

(3.1) Z a(p) = Bloglog x 4+ M, + O((log z)~40)

0
p<w

with some constant M, € R, which follows immediately from ([2.2)) via partial
summation. In view of our assumption that f(p) = O(1), this formula implies
trivially that B(x) < loglog x. Moreover, if we define, for every prime p,

Yo(p) == Z A7)

oo’
v>2 p

then we infer from (2.1)), (2.3 and (2.4) that

bolp) < (loglog(p + 1))%
P

and ) o(p) < oo.

LEMMA 3.1. Let ac: N — R be a multiplicative function satisfying (2.1
and (2.4) with some 09,99 > 0 and go € [0,1). Fiz h € R, ¢p € (0,1) and
co € [1,65"), and define

oty = 5 58 (e )

g<z 9
Ry=a

where a € NN [1,z] is squarefree. Then there exists a constant §o > 0 such
that uniformly for all sufficiently large x, any § € [dp loglogxz/logx, 1], and
any squarefree a € NN [1,z] with w(a) < (1 — gp)eodt, we have
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Ion(z;a)

R CC T M) P

logz \ zcodw(a) a

where

Aala) := H Z ag():;)’ L(a) := H(log log(p + 1))%.

pla v=1 b pla

Proof. Let 6 € (0,1] and fix ¢ € (co,¢p"). Put &1 := (1 — o) *¢16 and
y := ¥ For any squarefree a = p1 ---pp, € NN[1,z] withp; < --- <pp <z
and k < (1 — gp)egd ™!, we have ké; < c1ep < 1 and

h
a(py") - a(pyr) 3z
Lp@a)= Y oo (08— | -
m e, P1 Py, Py Py
P b <z
ViV 21

On the one hand,

h
Z a(p') - Oé(PZk) <log 3z )
ooVl ooVk 21 Vi
” - p DY p p DY p
pllmpkkﬁy 1 k 1 k

ViV 21

a l/l .--a Vk k
- > (ﬁém)_,, D) (10g 30y (14 0 20 > " vilogp;
. p] Py, log 3x 4
pitep <y =1
ViV >1
Viy ... Vk 20(K) ¢, ~L(a)1l
_ oz(pl ) Oé(pk )(log:c)h —l—O( €h,0 (a) Og Pk (logx)h_1>,

A0 % aovV,
01”_pk0k a

1%
Pl E<y
Vlyeey V21

by (2.4). From ({2.1)) it follows that
3 a(pt') - - olpyt)

Il
>

1

O(k

a(a) + O <2 (*) Z (1—00)v1 (1—00)vk )
p .. .pk

pytpk >y 1

V1,V >1
The sum in the error term above may be split into two sums according
as py?---pyF < yor py?---p* > y. In the first sum we must have pj* >
y/(py? -+ py*). Thus summing over v; and then over vy, ..., v, we see that
the first sum is
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O(k) k—1
1 Z | < 2¢%) (log x)

yl—QO pVQ“. Vk< - mClk(S(lng2> e (logpk> :
2" P XY
V2,V 21

<

The second sum is simply

1 1
Z (1—g0)v2 o (1—00)vk Z (1—g0)v1
Dy, 1

14
py2-pih >y P2 n>1P
v, V21 1

< Z (I=oo)v2 (1—oo)vi’
py2plk >y Po Py,

V2,5V 21
It follows that
> :
(I—go)r1  (1—e0)vk
popE sy Py by,
Vl,...,l/kzl
1 20(k) (log z)k—1
< Y “Tam mam Tt xﬂké(logz(»)g- : -)aogpk)‘
o2 sy P2 Dy
v,V 21
Repeating this argument, we obtain
Z 1 < 20(k)(10g .’E)k_l
(oo pli=eove = geikd(log p) - - - (log pi)

piLep sy P
ViV 21

from which we deduce

(32 Y a(p?)”'a(pzk)zxa(a>+0( 2009 (log ) >

oV ooV 21k (log po) - - - (log p.)

1%
prlepE<y
Vi,V 21

On the other hand,

h h
a(p”) 3x9 1 3x9
Y e le) < 2 ()

T1<p¥<zx3 log,, 1 <v<log,, z2
VEZ
log,, x2
§ ] 3.T2 hd Z 1
= — O —_— e —
& pt p(l_QO)t
logp T t<y§logp x9
VEZL

uniformly for all primes p and all 0 < x1 < x9. Using integration by parts,
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we see that the integral above is equal to

(og(3aa/m)t Y !

(1—00)v
logp T <u§10gp T2
VEZ

log,, z2

1 329\ "
V() a(e)

log, z1 “t<v<log, z2
VEZ

Since

Z 1 _ 1 pl—o < 1
p(lfgo)t p(lfgo)(LtJJrl) pl—e —1 p(lfgo)t’

t<V§10gp$2
VEZL
we have
1 (log(3wa/z1))"
(log@Brz/e))" ). —am < g
log,, 21 <v<log), x2 1
VEZL
and
1
og§x2 1 J(1 32 "
Z p(1—co)t Og?
log, 1 “t<v<log, z2
Vel ]ogpmz 3 h—1
)
< enologp | p<1—go)t(log pt) “
1ogpa:1
. log(3z2/x1)
_ eno h—1_(1—go)t
_ t [ dt
=
(3:132) e log 3
1—00
€h,0 h-1 (322
U ] P
< (3902)1790(0*%(3562/%)) <5L“1 >
_ eno(log(3az/x1))"!
= 1_ :
plm
Hence,
, h
(3.3) S o) (g 82" CosBra/m)
. I S ay
1<p”<z2

uniformly for all primes p and all 0 < x; < xo. This inequality implies
immediately
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a(P) - a(pyr) 30 \" _ 290 (logx)h
Z pa’oV1 . ‘pUOVk IOg v .ka’ S yl—go Z 1
y<pit-pF<z ! K K Py prk <z
Vi,V 21 V2,V 2>1

20(F) (log z)k+h—1
~ z%(logpa) - - - (log pi)

Lemma now follows upon combining the above with (3.2)) and taking
do = 1/(c1 — ¢p) with the range § > ¢ loglog x/log z in mind. =

Let o be a multiplicative function as in Theorem with Ap € (0,1).
Suppose first that holds with the restricted sum Z; replaced by the
full sum } . For o9 = 1 de la Breteche and Tenenbaum [5, Theorem 2.1]
showed

St = @H(l _ ;)ﬁiag’ﬁxaogx)f“(l +0(ogmm ) ):

where the implicit constant depends at most on the explicit and implicit
constants in the hypotheses. For the general case where o¢ > 0 is arbitrary,
it is easy to show, by applying the above to a(n)/n°°~! and employing
partial summation as in [11} proof of Corollary 3.2|, that

(3.4) S(z) = ; a(n) = Mgz (log )1 (1 +0 (M;)%) )
where

1 1V &)
@9 v () 5

v=0

Suppose now that holds with the restricted sum Z; being the sum
> >0y Where Qo > Ts some constant. Let Py := [],«, p and let 1p0( ) be
the indicator function of the set {n € N: ged(n, Py) = 1} Then a(n)lp,(n)
is a nonnegatlve multiplicative function satisfying (2.1} ) with the sum
Z' in (2.3]) replaced by the full sum Z In partlcular 1 } is applicable
to a( )1p0( ). Thus, we obtain

(3.6) > a(n) = Xa(Po)z"(log 3z)" ! <1 + 0(@))

n<x
ged(n,Py)=1

where

Aa(Fo) ::aoz}(mpH (1_21)>ﬁ‘ 11 (1_> Z W.

p>Qo
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Examining the proof of Lemma [3.1] we find that for every given h € R,

o) (, 32\" 17 =) h 1
5 2 105 2)" T 520 gyt (140 1
g<e 1 q p<Qov=0 ¥ &
Rq|Po

for all sufficiently large x. Combining this with (3.6) gives

S)y=> alg) >  a®)=2xa"(logz)"" <1+0((10;)A0)>,

g<z n'<z/q
Rq|Po ged(n/,Po)=1

which is the same as ([3.4)).
For our applications, we will need an asymptotic formula for

S(x;a) = Sa(z;a) = Y a(n)

n<x
ged(n,a)=1

uniform in @ € NN [1,z]. One may be tempted to apply to the func-
tion a(n)ly(n), where 1,(n) is the indicator function of the set {n € N:
ged(n,a) = 1}. However, it is not immediately clear whether the implied
constant in the error term obtained via this naive approach is independent
of a € NN [1, z]. Fortunately, the following lemma provides the desired esti-

mate for S(x;a) under the hypotheses (2.1)—(2.4).

LEMMA 3.2. For any a € M* with parameters Ag, 3,09, %, 00,7, we
have

S(x;a) = 2 (log )"~ <>\a(a) +0 <(10g1x)Ao>>

uniformly for all sufficiently large x and all a € NN [1,x], where
1 1\? < 1)[j = a(p¥)
(@) =—TT(1==) TI(1-- :

(@) ool'(3) g( p) lpg p ;) pooY

The tmplicit constant depends at most on the explicit and implicit constants
i the hypotheses.

Proof. Let a € NN [1,z]. For simplicity of notation, we write >.* for
sums in which the indices take values coprime to a. As we have demonstrated
above, there is no loss of generality in assuming that og = 1 and that
holds with the restricted sum Z; replaced by the full sum Zp. Note that

0 < Aa(a) = A (i O‘(ZZV)>1 < M.

pla “v=
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To estimate S(z;a), we start by connecting it with

T(x;a) =Ty(z;a) := Za O[Eln).

n<x

It is clear from (3.4)) that S(x;a) < S(2;1) < z(logz)?~! and T(x;a) <
T(x;1) < (logx)”. Moreover, it is shown in [5, proof of Theorem 2.1| that

(3.7) T(:1) = <1+O<10;x>>);‘(logx)5.

Following that proof, we find

(3.8)  S(z;a)logz

= Za a(n)logn + Zaa(n) log%

n<zx n<x
= Za a(k) Za a(p”) logp” + S S(i’ @) dt

k<z v<z/k 1-

ik

=>""ak) Y " alp)logp + O(Z a(k) Y alp) logp)

k<z p<z/k k<zx p<z/k

plk
+0(Y a(k) Y a(p*)logp”) + Ola(logz)*™)
k<z pV<z/k
v>2
= BaT(x,a) — > a(k) Y a(p)logp
k<z p<z/k
pla

v & 2(log 2)P~1
O( gk(log(&r/k))f&o) + O(z(logx)” 7).

By partial summation we have

a(k) S(z) ¢ log(3z/t) — Ag
Z *(log(3z/k) A w(log3)A S 2 (log (32 1)) A1 () dt
¢ (log3t)s—1
logq,' 5 1 T S . logg?)m/t =

1

log x 1

= (logz)" ' + | (log3+ )"
3 (log 3z — t)Ao
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(log ) /2

1
| (og3+1)°~"at

< (log ZL')B_I + W
0

logx 1
B8—1
+ (log z) S g3z — 1 dt
(logz) /2

< (log z)B=40,
Let 21 := x/(logz)?. For k < x1 we see that

1 log log )70 1 ey
2 (p)logp < (loglog )™ loga <

p<z/k
pla
so that
a a(k) B—A
1 1 —_— 1 0,
(3.10) ]; a(k)p;x/k a(p)logp <<xz o Bar ) < z(log )

pla
On the other hand, by (2.2) we have

(3.11) Za a(k) Z a(p)logp

r1<k<z p<z/k
pla

k
L Z a;) < x((log:c)ﬁ — (logz1)” + O((loga:)ﬁfl))
r1<k<z
< z(logz)’ tloglog z,

where we have used (3.7) to estimate the sum over k and the mean value
theorem to get

(logz)? — (logz1)? = peP~1 log 1 < (logz)’tloglog x
for some & € (logz1,log ). Combining (3.10) with ( -, we obtain
S ak) 3 ap)logp < az(logaz)ﬂ_‘%.

k<z p<z/k
pla

Inserting this and (3.9) into (3.8) yields

Bl’ —1-A
(3.12) S(z;a) og 2 (x;a) + O(x( og ) )
uniformly for all sufficiently large z and all a € NN [1, z].

It remains to estimate T'(x; a). To this end, we repeat the argument above
with a(n) replaced by a(n)/n. From ({2.2) it follows that
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(3.13) Z a;p) logp = Blogz + O((log x)l_AO).
Thus, 7
T(x;a)logz = Za agln) logn + Za Ml
) o
k<z p’<z/k
plk
a alk a a ok o
= kg; S{)p;x;kg))logpqLO(]; ;)p;k;p)logp>
- - - plk
ro( X z g1 ) + Ui
k<z <z/k
/>2
=B+ 1)U(z;a) Z(—Z ()logp
k<z k p<x/k

where

(3.14) U(z;a) := Za o(n) log% = S

In view of (3.13)), we have

> a;p) logp< > a;p) logp+ Y a;p) log p

p<a/k p<(logz)? (log 2)*><p<z
pla pla
1
< loglog z + (loglog x)"° Z o8P
(logz)?><p<z
pla

log log x
(log z)?

< loglog x + (loglog )" w(a)

< loglog x,

so that

Za agﬁ) 2 a;p) logp < (loglog z)T'(z; a).

k<z p<z/k
pla
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It follows that
T(z;a)logzx = (B + 1)U(x;a) + O((logaz)l_AOT(:L‘; a)).

Hence, there exists a function €(z;a) such that €(x;a) = O((logz)~4°) and

1 B+1
1 —e€(z;a) logz

(3.15) T(xz;a) = U(z;a)

uniformly for all sufficiently large z and all a € NN [1, z].
Finally, we estimate U(z;a) and T'(z;a) by following [30, proof of Theo-
rem A]. For y > 2 and a € NN [1,y], let

V(ysa) = 10g<(106g;;HU(y; a))-

In light of (3.14)) and (3.15)), we have

d B+1 1 d
—V(y;a) = — + -—U(y;a
(;a) ylogy  U(y;a) dy (i)

dy

B+1  T(ya) B+1  e(ya) < 1
ylogy  Uly;a)y ylogy 1—e(y;a) — y(logy)tot!
uniformly for all sufficiently large y and all @ € NN[1,y], which implies that

d
Vi = § @V(y; a)dy < oo.
Since
T d
V(z;a) — =V, — S d—yV a) dy = V, + O((log z) =)

uniformly for all sufficiently large = and all a € NN [1, z], it follows that
B+l
(log ) +!

Combining this estimate with , we infer that

(3.16) T(xz;a) =exp(Vy + V(2;a))(log x)ﬁ(l + O((log x)_AO))

uniformly for all sufficiently large x and all a € NN [1,z]. The leading
coefficient can be made explicit by arguing as in [30, proof of Theorem A].
Alternatively, we can also take advantage of . Fixing a € N, we deduce
by with og = 1 that

U(w;0) = exp(V(2;.0)) = exp(Va + V(20)) (1 + O((log ) =)

Aag"’) (log 2)? (1 + O((log ) ~2))

for all sufficiently large x. Comparing this with (3.16]) shows exp(V,+V (2;a))

T(z;a) =
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= Aa(a)/B. Carrying this back into (3.16]), we obtain
Aa(a)

T(xz;a) = ———(log a:)ﬁ(l + O((log x)*AO))

uniformly for all sufficiently large x and all a« € NN[1, z]. Inserting the above
into (3.12) completes the proof of Lemma "

The next result, which is key to the computation of moments, is a direct

corollary of Lemmas [3.1] and [3:2]

LEMMA 3.3. Fiz ¢y € (0,1), and let « € M* with parameters Ay, [3, 0o,
Yo, 00, r- Then there exist constants &g > 0 and Qo > 2 such that, uniformly
for all sufficiently large z, any § € [oologlogz/logx, 1], and any squarefree
a € NN [1,2] with w(a) < (1 — po)egd™", P~(a) > Qo and P*(a) < x°, we
have

D a(n) =\ <F(00, a)

n<x
aln
20w(@) [,(a) 1 €p11og Pt (a)
) 90(] B—1
O (g ) s

where L(a) is defined as in Lemma[3.1],

F(09,a) := H(l - (i a(p”)pf"ol’)_l),

pla v=0

and Ay 1s defined by (3.5)).

Proof. Suppose that d9 > 0 is a constant for which Lemma holds
when co =1land h € {f —1,8—1— Ap}. Let Qo > 2 be such that

for all p > Qp. Then

(3.17) F(o0,p) = ioﬁz)*O((i %)3

v=1 v=1

= O;E,]Z) + O(wo(p) + O;(p)2>

200

for all p > Qq. For any squarefree integer a € [1, 2] with w(a) < (1—00)e0d~?,
P~(a) > Qo and P*(a) < 29, by Lemma [3.2] we have

(3.18) S a(n) = 27 (log 3z)7! <)\a(a) + o(@))

n<x
ged(n,a)=1
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Note that
dYoam) =Y ale) Y, a@)
n<z q<z n'<z/q
aln Ry=a ged(n’,a)=1

By (3.18)), the main term of the inner sum contributes

32\° 71
Aa(a)z? o log — ,
(a) §< (q)< g q)
qsx
Ry=a

which, by Lemma |3.1] is equal to

Aa(@)27 <5\a(a) + ()(20(‘“(“)) ( 1 culla)log P+(a)>>>(log -

logz \ zdéw(a) a
O(w(a)) L(a) log Pt
= Ao (F(ao,a) +O<2 <1 + €g.1L(a)log (a)>>)x°°(logm)ﬂl,
logz \a a

since a < %@ Analogously, the contribution from the error term of the
inner sum is

20(@(@) 1,(a) log Pt (a)
alogx

<< >\a <F(007 CL) + >x00 (log x)B_I_AO

O(w(a))
< )‘QQ—L(a)xoo (log x)
a

B—1-Ao
b

where we have used the estimate F(og,a) < 2°“(@)L(a)/a, which follows
directly from (2.4) and (3.17). Combining these estimates completes the
proof of Lemma [3.3] =

REMARK 3.1. We point out that the lower bound Qg for w(a) in the
lemma above is by and large an artificial thing, whose value is insignificant
for our applications. However, we need it because may not hold for
small primes. As we shall see later, having such a lower bound also frees us
from dealing with minor contributions from small primes.

4. Computing moments. By rescaling the strongly additive function f
in Theorem 2.1} we may assume, without loss of generality, that |f(p)| < 1
for all primes p. Note that 0 < F'(0p,p) < 1 for all primes p. For every p we
define f,: N — R by

foln) == f(p)(1 = F(og,p)) if p|n,
’ —f(p)F(o0,p) otherwise.
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Given any ¢ € N we may also extend f, via complete multiplicativity by

setting
n) = H fp(n)
p“llq
It is clear that |f,(n)| < 1. The following result provides an approximation

of the moments of f in terms of those of f,.

LEMMA 4.1. Let o € M* with parameters Ay, 3,00,%0, 00,7, and let
f: N — R be a strongly additive function with |f(p)| < 1 for all p. Then
there exists a constant Qg > 2 such that

> am)(f(m) = A@)" =Y am)( Y fH() + OB,z wim)
n<y n<y Qo<p<z
uniformly for all sufficiently large x > z, any y > 1, and all m € N, where

E(y,z,w;m)

= ¥ (@)20@ ) (log(v+2))° Y a( ‘ S L] wmzw),
a+b+c=m a,0¢ n<y Qo<p<lz
0<a<m
b,c>0

=logx/log z, w := z'/1°&W+2) g

(n;z,w) := Zl

z2<plw
pln

Proof. Let Qg > 2 be a constant for which - ) holds. Suppose that
z > Qo is sufficiently large. By and the fact that Z Yo(p) < o0,

we find
> f(p)F(00,p) = A(z) + O(1).
Qo<p<z
We compute

fln)=A)= Y fo) = > f(©)F(o0,p) +0(1)

Qo<p<z

p>Qo

Y. o +> )
Qo<p<z p>z

p|n pln

Z f(p)F(JQ, Z f 007 (1)

Qo<p<z z<p<z

Yo H)+D f)— > f)F(o0,p) +O(1).
Qo<p<z P>z 2<p<z

pln
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By (3.1) we have
]Z F(p)F (o0, p ‘ 3 (;ET](:)—FO(l)gBlog(v—FQ)—FO(l).

z<p<zx z<p<z

Since

SN >0 1 <w(niz,w) +log(v +2),

p>z z<p<lz
pln pln

it follows that
f(n)—A(z) = Z fp(n) + O(w(n; z,w) + log(v + 2)).
Qo<p<z

We have thus proved
> a(n)(f(n) — Ax))™
= a(n)( 3" fp(n) + Ofw(n; z,w) + log(v + 2)))’”

n<y Qo<p<z
Opening the mth power on the right-hand side by means of the multinomial
theorem completes the proof of Lemma n

Let z = z'/? and w = 2/1°8(*+2) be as in Lemma where v > 1is a
function of x and m to be chosen later. Fix ¢y € (0,1) and 7o € (0, 1], and
suppose that y € [z, z]. Under the hypotheses in Theorem we seek to
estimate the weighted moments

m
Sam)( Y H)
nly Qo<p<z
appearing in Lemma [£.1] Expanding out the mth power we see that
m
@) Yam( X Hm) = Y Y e ).
n<y Qo<p<z Qo<p1,.-.,pm <z n<y
This suggests studying the sum
> aln)fy(n)
n<y

(q) > Qo and PT(q) < 2. A key observation is
that fy(n) = fy(ged(n, R ) From this we deduce
)

)-
Yoamfen) =) fola) D alm) =) fela)u®) ) an).

n<y a|Ry n<y ab|Rq n<y
ged(n,Rq)=a ab|n

for ¢ € N with w(q) < m, P~

Note that logy/logz € [nov,v]. By Lemma , there exists a constant
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vg > 0, independent of @Yy and 79, such that

42) D am)fe(n) = ra(Gloo,q) + 022 E,(q)))y™ (logy)*

n<y
uniformly for all sufficiently large x, any y € [, z] and
v € [ny*,vo log z/log log ],
and all m < (1 — 00)€p log y/logz where

007 Z fq 007 ab)a
ab|Ry
_ | fq(a)|L(ab) < 1 €p.110g P*(ab))
) abzlgq (logy)® © log y '

Combining (4.2) with (| gives
(4.3) Zam)( Z fp(n))

n<y Qo<p<z
= Ao (G(2) + 029 D(y, 2)))y™ (log y)* 7,

where

G(Z) = Z G(O-()?pl t pm)a
Qo<p1,--,pm <2

D(y,z) = Z Ey(p1---pm).

Qo<p1,.-,pm =<2

5. Estimation of G(z) and D(y,z). It is easy to see that G(oy,q)
is multiplicative as a function of ¢. Indeed, given any ¢i,q2 € N with
ng(Q1, QQ) = 17 we have

G(o0,1)G(00,42) = D fan(a1) fgr (a2)(br) p(b2) F (00, arby) F (o0, agbs)
a1b1|Rq,
azba| Ry,

= Z far(a1a2) fo, (a1a2) p(bibe) F (o0, arasbiba)

a1b1|Rq,
agba| Ry,

= Z Jarg2(a102)pu(b1b2) F (00, arazbib)

a1b1|Rq,
agba| Ry,

= Y fagp(@u®)F(oy,ab) = G(oo, q142).

ab|Rg, qy
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Furthermore,

G(o0,p") = fpr(1) + fr(p)F (00, p) — fpr (1) F(00,p)
= (=f(p)F(00,p))" + (f(p)(1 = F(00,p)))" F(00,p)
— (=f(p)F(00,p))" F(o0,p)
= f(p)"F(o0,p)(1 — F(00,p))
x ((=1)"F(o0,p)" " + (1 = F(00,p))" ")

for all prime powers p”. Note that G(og,p) = 0, |G(00,p")| < 1/4, and
G(00,p”) > 0 when 2| v. In addition, by (3.17)),

(5.1) G(00,p%) = f(p)*F(00,p)(1 — F(00,p))
2 a 2
Zawﬂﬁ2<+0<%@ﬂ+1§2>
and
f(p)?

a@?)

52 160" < O Plonp) < 0 +0(vow) + 2L

Tpoo
for all p” with p > Q¢ and v > 2.

Now we proceed to estimate G(z) in the main term of . Recall that
y € [, z] and z = z1/%. We shall suppose in this section that 1 < m <
min(v, hoB(z)'/?3), log(v + 2) = o(B(x)), and mlog(v + 2) < B(x), where
0 < hg < (3/2)%/% is any given constant, and obtain a uniform treatment
for G(z) and D(y, z) under this more general assumption. Since G(oy, q) is
multiplicative in ¢ and G(og,p) = 0 for all p > Qo, we have

(5.3) Giz)= > Gloo,p1 pm).
Qo<p1,.,pm <z
P1-+-Pm squareful

When 2| m, the main contribution arises from

m)!
(54) e oL Clooniply)
m/2 "

(m/2)12 Qo<P1Pmy2<z

1yeer distinct
p "Pm /2 m/2

=Cn Z HG(O—Oap?))

Qo<p1,-Pmy2<z i=1
P1,--Pm/2 distinct

since the number of ways to partition a set of m elements into m/2 two-
element equivalence classes is

m) m!

(m/2)12m/2 — ml!

m-
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The sum on the right-hand side of (5.4) can be rewritten as

m/2—1
G(a0, ) G(00,9%,/2)
00,D; 007pm/2 .
Qo<pi;--Pmyj2-152z =1 Qo<pm/2<z
ply--'vpm/2—1diStinCt pm/27£p17"'7pm/271

By (5.1) and (3.1), the inner sum over p,, 5 is equal to
m/2—1

> Gloor) = Y G(oo,p§>=3<z>+o< T 0‘<P>)

p°°
Qo<p<z 1=1 Qo<p<gn
= B(z) + O(loglog(m + 2)),

where N = m/2+47(Qq) and gy is the Nth prime. Repeating this argument
we obtain

m/2

> TIGe0p2) = (B(z) + Olloglog(m +2))) "%,
Qo<P1,--sPm/2<z 1=1
P1s--3Pm /2 distinct

But

< Blog(v+2) 4+ O(1).
z<p<zx

Hence when m is even, the main contribution to G(z) is given by
Crm (B(z) 4+ O(log(v + 2)))
The remaining contribution to G(z) comes from

(5.5) 3 > > <k1 >HGao,pZ

s<m/2 Qo<p1<-<ps<z ki+-+ks=m
k17~~~7k522

Since ([5.5)) vanishes when m < 2, we may suppose m > 3. By (5.2)),

H|Ggo,pz |<H( <¢( )+O;§§;32>>‘

"2 = CB(@)™?(1 + O(mB(z) log(v + 2))).

Thus,

> e

Qo<p1<-<ps<zi=1

< %(B(x) +0(1))° = %B(az)s(l +O(sB@) ™) < 2
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Since
m m! m! (m—s—1
< — l=— 2
> ()= 2 ()P
ky+tks=m ky+tks=m
kly--wksZQ k17~--7k522
the sum (j5.5)) is
1 fm—-s-1
| S
<m! Y 3!28< o1 >B(:B)
s<m/2
To further estimate the latter sum, we put my := |(m — 1)/2] and observe
that

> (e

s<m/2
=B@)y™ Y L(m=s =1 prgysm
5128 s—1

s<mi

1 —s5—1 -
§B(:L’)m1m_3m1 Z hE <m8_81 )hg(rm s)m3s,

s<mi

where we have used the assumption that B(z) > m?3/h3 with some 0 < hg <
(3/2)%/3. Let

1 if2|m,
em =
" 1/2  otherwise.
Then my = m/2 — e,,. Note that

1 /fm—s—1 _
—3m 3(m1—s)__3s
m Z 5128 ( s—1 >h0 "

s<m/4
1 9\ fmA\®
< *3’!’1’11 = o
=m Z 5!(8—1)!<4> <2>

s<m/4

my 4\ m/4
< m_3m1 <9> (m> << %m:;em

4 2 m! ’

since

C 1
m _ — m—(m+1)/2em/2
m! 220 (m/2 + 1)

(?) We have corrected the binomial coefficient in [I7, (11)].
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by Stirling’s formula. Next,

1 /m—s—1 _
—3m 3(m1—s)__3s
mP ) < 1 )ho "

S
m/4<s<m/3

1 m*\*°
O(m —3m
< 2000 Z s!(s—l)!<2)

m/4<s<m/3

2O(m)m—3m1 mA\ ¢
P —
e T (%)

m/4<s<m/3

20(m) p —3m1 Am/3 _ 90(m)  —2m/3+3em
mm/2 B
C,

< Zmp3em,
m!

Finally, we observe that

1 fm—-—s—1 _
—3m 3(m1—s)_ 3s
mE Y ( 1 )ho "

S
m/3<s<my
1 fm—s—1 _
_ —3mq 3(m1 5) 3s
" Z 8!25( m — 2s >h0 "
m/3<s<mi
1 _
< m3m Z X (m _ S)mf2shg(m1 S)m&s
m/3<s<mi ’
—3m1 1 /9 m—2s
m my: [ am 3(m1—s)  3s
= mq! Z 8!25< 3 ) g "
m/3<s<mi
m_3m1 i T mi1—s 2ﬂ m—2s S(mi-s) 3
< Z hg m
m1! 28 2 3
m/3<s<mi
mm72m1 2h3/2 m—2s Cm 36
<am 2 (% <
m/3<s<mq

Collecting the estimates above, we deduce that the contribution to G(z)
from ({5.5) is

m3 3/2
B(z)

< Cpym®*m B(z)™ = CmB(x)m/2< > < CB(a)"™? 2

B(z)
We can therefore conclude that

(5.6) G(z) = CpB(z)™/? (Xm (1 +o<”m§((z)+2)>) +o< m?? ))
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Next, we estimate D(y, z) in the error term of (4.3]). By definition,

D(y’z) = Z Z Z (klj'an"ks)Ey(plfl‘--p’;S).

s<m Qo<p1<-<ps<z k1+--+ks=m
klv---vkseN

Let
o= 3 S,

ab| Ry
Then H(0y, q) is multiplicative in q. Moreover,

1 n €s,110g P+(q))‘

Ey(q) < H(Uo,q)<

(log ) o logy
It follows that D(y, z) < D1(y, z) + €g1D2(y, z), where
Dily2) =
z) =
e (log )0

" ONED SIS SR (RN | (0!

s<m Qo<p1<--<ps<zki+-+ks=m

kly--wkseN
1
DQ(yv Z) = log y

S
m ks
X Z Z log ps Z <k: i > HH(Uo,pi

s<m Q0<p1<---<p5§z ki+-+ks=m 1y---5hs i1

k1,...,ks€EN

By Mertens’ theorems [22, Theorems 425, 427|, for any ¢ > 3,

(loglogt)?ot! + O(1)

(57) Z (log IOg(p + 1))190 _

P D vo +1

and

loglo +1))% 10
) Z( g g(pp )" logp

= <1 + 0(1 + Y >> (loglogt)” log t.

(5.8

p<t

logt  loglogt

Furthermore, let
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denote the nth Touchard polynomial, where

ety (")

ni+---+ng=n
n1,...,ng EN

is the kth Stirling number of the second kind of size n. The sequence
{T,(t)}>2, of the Touchard polynomials is known to satisfy the recurrence

relation
Toin(t) = tz( )

from which one verifies readily by induction that

(5.9) T,(t) < (t + 2 5 1>n

for all m > 1 and t > 0. Since

H(oo,0") = |f(p >rF<ao,p><1+L§f)) Ll <p)p’L(p)<1—F<ao,p>>

og lo Jo
= 179 (Fioo,p) + (BN

p
for any prime powers p¥ with p > Qo, we deduce from (3.17)), (5.7), (5.8)

and (5.9) that

20(m)
Di(y,z) <

1 m
- s(Po+1)
(log )4 ;n 51 (loglog 2) 2 (k:l, N k:)

key+-+ks=m
k1. ks EN
90(m)
Jo+1 Jo+1
T ((log log z)0 ™) < W(loglogfv)m( o),

- 90(m)
(log )0 ™™
and

20(m) Jog 2~ 1 m
< 1 s(¥o+1)—1
DQ(yaZ)— log = Z (5_1)!(10g ng) Z ki,...,ks

s<m ki+-+ks=m
k1,....ks€N

90(m)
~ vloglog z

90(m)
Ton((loglog 2)"*!) < =——(logloga)™ "D ~1,

Hence, we conclude that

_1( loglogz €1
1 D < 2O(m) log1 m(do+1)—1[ P& Y5 s )
(5.10) (y,2) < (loglog ) (Togz)™ T

6. Estimation of E(y,z,w;m). In this section, we seek to bound the
function E(y, z,w;m) introduced in Lemma under the assumptions of
Theorem [2 . We start with the case f=1. Suppose that 1 <m<hoB(z)/3,
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where 0 < hg < (3/2)%? is any given constant. Recall that y € [z, z],
z = 2V and w = 2/1°8"+2) With the choice v = (1 — g9) ey 'y tm,
we clearly have v € [y, vologz/loglogz] and m < (1 — gg)eglogy/log 2.

Inserting (5.6) and ([5.10)) into (4.3]), we obtain

3/2
6.1) = AaCB m/2< m+0< o )) %,
(6.1) Y a (pr) (2)™2( x =)

n<y Qo<p<z

The key lies in the estimation of the sum

(6.2) 3 a(n)‘ 3 hn)

n<y Qo<p<z

w(n; z,w)’.

In the present case, we may simply use the trivial bound w(n; z, w) < v < m,

so that (6.2)) is bounded above by

Db S am)| Y fn)

n<y Qo<p<z

It is clear that we can use . ) to handle the sum above. If a is even, then
this sum is < A\oCyB(x)*?y%0; if a is odd, then it is

<(Sem| ¥ s ) (Zam| ¥ s

n<y Qo<p<z n<y Qo<p<z

< Aa/Ca—1Coy1 B(x) 2y

a+1>1/2

by the Cauchy-Schwarz inequality. The sequence {Cy}§2, is strictly increas-
ing, which can be easily seen from the identity

Coo _ 41 _T(24+1) 5 T(/2+1)
C, V2 T((t+1)/2+1) r((e/2+1/2)

and the fact that I'(y) is strictly increasing on [3/2,00). Moreover, by Stir-
ling’s formula,

CE < 1 ((E-l- 1)/2)£/2+167(£+1)/2 < 1
Coot  LH1 ((/2)FDPe P NESY

which implies that
. < 90m-a)c \/7' QOom-ayg [ a® 220G
ml = (e
for all 0 < a < m. Hence, is bounded above by
20(m=a)\ ' mb
(Vm)m=e

B(w)a/2yao < QO(m—a))\aCm(\/E)m—aB(x)a/ano‘
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Inserting this inequality into the definition of E(y, z,w;m), we conclude that

m—1

63 Bpusm) <0 Y () B ROV

a=0
< AaCrum®? B(z)m=1)/2y0
Now we consider the case 8 # 1. Suppose that
1 < m < B(z)"?/(logloglog z)*/3
and B(x)/(logloglog z)? — oo as  — co. In this case we take

v = (log log x)m(’%”),

so that v € [21761,00 log x/loglog x] and m < (1 — gg)ep logt/log =z for an
t € [2™/2 z] when z is sufficiently large. Inserting (5.6) and (5.10) into (4.3)
leads to

64 Sam( X fm)"

n<t Qo<p<z

= AaCoB(z)™? <Xm + 0( m;; >>t”0 (log )P~

uniformly for all ¢ € [#0/2, z]. Again, we need to estimate (6.2) uniformly
for y € [z, z]. Note that (6.2) can be rewritten as

> Y X b(h,“b.,lk) > atm| ¥

k=12<p1<--<pg<wli+-+lp= n<y Qo<p<z
Iy, 0l >1 p1--prln

a

Observe that

a

S oam)| Y A= Y a@ X em)| X A
n<y Qo<p<z <y n'<y/q Qo<p<z
p1PE|n Rq=p1--px ged(n/,q)=1
< Y a@ Y am)| X s
quqiy - n<y/q Qo<p<z

since pi,...,pr > p.
If g =p*---pi* > /y with given z < p; < --- < pp < w, then we have
the trivial estimate

S am)| Y hm)| <@t Y am)

n<y/q Qo<p<z n<3y/q

oo B—1
<L A7 (2)? <y) <10g 3y>
q q
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by (3.4) and the fact that |f,(n)| < 1. By the proof of Lemma and in
particular by (3.3)), we find that

> ()

-1
- ¥ apft) - alpy) () 3\’
= POV oo \ OB T
VI ek <y k K
Vlyeey V21

20(K) (og y)F+5-2
(\/y) 1—00 ’

<

from which it follows that

a O(k),,00 o k+p—2
Z a(q) Z a(n)‘ Z fp(n)‘ <<)\a7r(z)a2 y™(logy) :

1—00
VY<q<y n<y/q Qo<p<z (\/37)
Rq=p1-pi

Summing the above over all z < p; < --- < pr < w yields immediately

(6.5) oY a@ Y a)| Y A

2<p1<-<pr<w | /y<q<y n<y/q Qo<p<z
Rg=p1---py

a

200y (logy)* 72 Aay™(logy) P!
N T I

for sufficiently large x, since y € [x™, z] and

< A7 (2)%r(w)

a+k<m < (loglogz)'/3/(logloglog z)*3,

wornw < (e + 0oz ) )

w \" < gl/legloglogx (1 1og1og log )™
(log )™ '

and

log w

If ¢ = p*---pF < \/y, then /2 < VY < y/q <y < x. Thus, we can
apply (6.4) with ¢ = y/q to handle

> am| > p)

n<y/q Qo<p<z

a

If a is even, then this sum is
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v\ y\"!
< AaCoB(z)? <) <log )
q q
20(m—a))\a - 00 p-1
2oy ()" (1)
(Vm)m—e q q
if a is odd, then it is

(X am| X £ ) (X am| X o

n<y/q Qo<p<z n<y/q Qo<p<z

A\ oy
< >\a Ca71Ca+1B(l‘)a/2 (q) <10g q>

QO(m—a))\a - o0 p-1
< (1) (10g?)
(v/m)m=e q q
by Cauchy-Schwarz. It follows that

> oal@ Y e X s

<y n<y/q Qo<p<z
Rg=p1---pr

a+1)1/2

90(m—a) ) Y70 a(q) y B-1
< amd B(z)*? (log )
WO

4<vy q°° q
Rq=p1-px
20(m=a)\ C.,
S—a a/2 Oologyﬁl O'I/
(e ) HZ e
2O(m—a)>\ C k )
-2 Zavmp.ya/2 ‘Tologyﬁl ( + 9 Pi)
e o T2+
for all 0 < a < m. Since (3.1)) implies that
)3 H( )
z2<p1<--<pp<wi=1 Z i Ok)
1 a(p 2
(T (2snm)) < Zroson
z2<plw
we obtain
(6.6) Z Z a(q) Z a(n)’ Z fp(n)
2<p1<-<ppr<w  ¢<\/y n<y/q Qo<p<lz
Rg=p1-pk
20m-0), ¢,

< W ™ (logv)* B(z )*/2y7 (log ).
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Combining with (6.5) and extending the inner sum over ¢ to the
entire range, we conclude that

oY a@ Y a)| Y A

z<p1<--<pr<w ¢y n<y/q Qo<p<z
Rg=p1-pk

20(m=a)\,Ch,
k!(y/m)m=
Hence, (6.2)) is bounded above by

90(m—a) \ b (log v)* b
2 A pye/2y00 (1og )01 < )
(v/m)m—a () ( gy) ; k! Z liy ool

li+-+l=b

- (logv)*B(z)"/?y* (log y)* .

1yl >1
20(m—a)\ ,C (b
= S T B(2) 2y (log y) P { }(log v)F

(Jm)m— 2\

20(m—a)>\ C

LS B () Ty (log v)y ™ (log y) .
(Vi)

It follows by (5.9)) that the above does not exceed
2O(m—a)>\acm

() B(x)**(log v)"y™ (log ),

where we have used the observation that logv > mlogloglogxz > m > b. In
other words, we have shown that

Yam| X s winizw)

n<ly Qo<p<z
20(mfa) AaCi,
(vm)m—e

Inserting this inequality into the definition of E(y, z,w;m), we conclude that

B(z)**(log v)’y™ (log )"~

(6.7)  E(y,z,w;m)

e (o)
a=0

< AaCrm/m (logv) B(z) ™ D/2y70 (log y) 7~
< )\aC’mm3/2 (logloglog x)B(x)(mfl)/Qy"O (log y)ﬁfl.

7. Deduction of Theorems 2.1] and 2.21 Theorem Iﬂ] now follows

immediately upon combining (6.1)) and (6.4) with (6.3) and (6.7]) and invok-
ing Lemma and . In fact we have shown that the same asymptotlc
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formulas which hold for M (z;m) also hold for
(7.1) S(y)~' Y aln)(f(n) — Alz))"

n<y
uniformly in the range y € [2, x], where 7y € (0, 1] is any fixed constant.
Now we prove Theorem Recall that under the hypotheses in Theo-
rem the multiplicative function a(n) satisfies conditions f. We
shall again suppose Ag € (0,1) throughout the proof. Define the strongly
additive function f: N — R, called the strongly additive contraction of f, by
f(p) = f(p) for all primes p. Then

72 Y am)(f(n) - A@)"
- Z ( ) S a(n)(F(n) — A@)*(f(n) — Fon)m*

n<x

for every m € N. The term corresponding to k = m can be estimated directly
using Theorem Hence, it remains to deal with

(7.3) Y am)(f(n) = A(@)*(f(n) — f(n))’

n<x
for0<k<mandl=m—k.
Note that
> an Afw)) <f<n>—f<n>>l\

n<x

)(f(n)
<X aln —A@F > @) - fw))]

plln,y>2

IN

> ST = £l £ @) — Fo)]

P1sesP1 <V plt ,...,p;'lga;
Vlyeos 1 22

Since f(p¥) = O(v"®) for all p”, the last expression above does not exceed

OB > (h’”l.?l)

<l pr < <ps <A/ i+ Fls=l1

l1,...,lsEN
x>t N an)|f(n) - Ax)|E.
pypt <a n<z

vy Ve
Ve, Vs >2 P seosDs % 1
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If we write n = p{* ---p¥*n/ with ged(n/,p1 - - - ps) = 1, then it is clear that

Fn) = A@)IF = | ) - +prz

i(i) ~

a=

—a

prl

0
Thus, the innermost sum of a(n)|f(n) — A(x)|* is not greater than
Y. a)f(n)-A),

(14) o) ol ()‘prz
n<a/(py"ps®)

where we have dropped the superscript of n for simplicity of notation. Since
the right-hand side of the above clearly vanishes if py - --ps > /2, we may
assume pp ---ps < /7 instead. Let N := 1 — g9 — logy A > pg, and choose
a constant max(1/2,/00/N) < dp < 1 such that 1 — go + 63\ > 1. Let
x5 :=x/(p1- - ps) and y, := 220, Then x4 > \/z > p1 -+ ps. I pi* - pls >
p1 - Psys with given p; < - -+ < pg, then we use the trivial estimate

Y. am)lf(n) - A@)

n<az/(pt-ps®)

< 29 (log ) Z a(n)

n<z/(py*-ps*)

O( ) x o0 3x A-1
< A2 a log z a(,/) <10 V> .
@ ( g ) pllpgs gpllpgs
Thus, (7.4)) is

V1 Vs 3$ B—-1
< ](06(1],,3 : pg(flfs ) <log P pys> )\a2o(k)x"° (log :L')k.
s 1 s

Since a(p”) = O((Apotoo=1)¥) for all p”, we have

V1 v p-1
3 ! oyt - a(p) 3z
Vfl"'yg 0'(1)1/1‘ 001/85 log 1 Us

. P *Ps b1 - Ps
P1psYs<pyeps <z

Viyeesy Vs2>2
< 20(1) § : I/iill . V;tls
P1Psys<py L pst <z
VlyeosVs 22

A \“ A\ 3z A-1
X\ 1= U B e log y>
<p%90) <p£90> ( p11 .. pgs
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20()

Kl ls
< (py--ps)il_go Z vy 1 l/:

Ys <p1111 "'pgs <ws
V1yesVs 21

<(7s) " () ()
lo) .
pi_QO p;_QO g plljl .. pZS

It is not hard to see that the proof of (3.3)) also gives

AN (1.32) 7 o (og(3za/21))7
> pioo ) U8 < _1-e0—Tlog, )

z21<p¥<z2 1

uniformly for all primes p and all 0 < z; < z3. Thus, we have

A V1 A Vs 3 B—1
Z Y Vgls( 1_9()) .. <1_QO> <10g lef”ys>
pl Ds pl R

Ys<pyteps® <ms
Vl,...,Vs2>1

. A\ A\ 3z, \7!
2o ¥ (5s) () ()

ys<p’1/1“_p;’sgws pl 1
V1,V 21
A\ A\ (log(3s/ys))" !
o( ! 5/ 98
<2 ( )(10g $)“ Z < Tog, )\) ... ( Tog,; /\) 1—go—log, A
py2pk<as P2 Ps Ys
v2,..,Vs>1

20() (log ) (rH+1)m-+5-2 200 (log x)#—1

= 200(1=00)N/2(py . p )OIN T g(1=80)N/5(py . p )BN

where the penultimate inequality follows from the previous line together
with the observations that piogm)‘ > \for all 2 < i < s, that z(11%)/2 >
(p1---ps)' ™%, and that

1—0o—log, X ’ z(1+00)/2
T A Sy <x(1—50)/2.

P1-Ds

SoN
) > ‘,L,(S()(l—(so))\//Z(pl . .ps)5g/\/.

It follows that

v Vs B—1
Vlill ...l/fils O[(pl )a(ps ) <10g 3z >
E : 1 s
7 Ve s p(fOVl . ngVs pllll . pg
P11 PsYs<py s’ <T
VlyewryVs>2
90(1)

p—(1=00)X'/5 (log x)ﬁfl,

(p1 - .p8)1—90+5§>\’
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from which we deduce that

(7.5) > > vt Y aln)lf(n) — A

P1<<PsSVT p1psys<pypgt <z , ST
ULyl >2 Pyt sensps® I
< 90(m) ) 00— (=8N /5 1o Y61 1
hS a E : v p Y1—00+33N
(pl ps)

p1<--<ps<V/T

1 BZERYY. _
< E)\axao (1=d0)A m(logm)ﬁ 1

On the other hand, if p¥" - - - p%s < py - - - pys, then 21700072 < g /(p¥" ... p¥s)
< z. Therefore, we can apply the asymptotic formulas for (7.1 with ny =
(1—100)/2 and y = x/(p}* - - - p¥*), in conjunction with the Cauchy—Schwarz
inequality, to estimate the inner sum in ([7.4). As a consequence,

Y. am)f(n) - A@)*

n<a/(pyt-ps*)

20(m—a))\ C x o0 x p-1
<« =" B(x)"? <l/1/> <10 1/1/) .
(y/m)m—a (=) piteps P

Inserting this into ([7.4]) shows that

Y. am)|f(n) - A@)*

n<x
v
pits Pt I

< QO(mik))‘aCm ) O‘(pllll) - a(pye)
ST R

" (m +0 <\/1,7L Zil If(pz')|>>kx”0 (log )71

2000Con alp)--alpl) 4 Q
_ a~m . s /2 _m oo 571

251
20(1))‘&0771 a(plfl) e 'O‘(pgs)

B(xz)*2270 (log z)# .

mt/2 ptlfom . ,pgovs
Note that
>, el et o) - a(ple)
1 s pt1701/1 . .pgol/s

pyLplE<prpsys

Ve, Vs 22 A V1 A Vs
o) wli L nls R A
<2 Z 41 Vs < T—o0 ) < 1—g0 )

Pyt ps <p1e-psys
VlyeensVs 22
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o) " y
§2—1—@0 > vf’l---ugls<1fgo> (3@)
(pl . pS) pll’l,..p:s<ys pl s
Vl,...,usgl
20(1) s )
i -0
SWHLI—WMA/M %,
i=1

where .
Lio(¢):=) n¢"
n=1

is the polylogarithm function of order —¢ and complex argument ¢ with
|C| < 1, where ¢ > 0 is any integer. For example, Lip(¢) = ¢/(1 — ¢) and
Li_1(¢) = ¢/(1 —¢)?%. The function Li_y(¢) can be expressed in terms of the
Eulerian polynomial A,(():

| CAC
Lid6) = 250

where ,
AN
A(C) = jZO<j><J

is the ¢th Eulerian polynomial, and

Ay

is the jth Eulerian number of size £. Combinatorially, it is known that, for
every £ > 1,

L
< > = #{7 € Sy: 7 has exactly j ascents},
J

where Sy is the set of all permutations of {1,...,¢}. Using this combinatorial
intepretation one finds that Ag(1) = #Sy = ¢!. Since Iy +---+ 1y =1 < m,
we have

S 3 0Okl -+ [rl]! 2000 (b .. qls)s
[Tt h/phey < 2 el |E_ 2 )
=1

(pl - .ps)l_QO (pl . .ps)l_QO
20) kil
= (p1--ops)iTeo’
by Stirling’s formula. Hence,
Z Vlill . yfils O‘(p?) a a(pgg) < QO(l)mHl
1 S p(170V1 .. _ngVs - (pl .. .pS)Q(l_QO) )

Pyt ps <preepsys
VlyeensVs 22
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It follows that

oottt N am)|f(n) - Ax)F

Pyt <prpsys by PEE
V1 yeiyls>2 Pyt yenpst|In
o(l Kl
20\, C\um

k/2 70 -1
S (e D) /2270 (log ).

Summing the above over p; < --- < ps < y/z, we arrive at

> Z vt Y am)|f(n) - Ad)*

p1<- <ps<\fp1 <Ps® <p1--Psys v ngxy
I/1, LWWs>2 p117-~-7pss||"
1
< o(l) (k—1/2)1 k/2,.00 B—1
< 270 AaCmm B(z)** 2" (log z) > (p1- - ps)2(1—e0)

p1<-<ps<\/T

oW
< 2 A GV B ()20 (log ),
S

since go € [0,1/2). Combining this estimate with (7.5)), we obtain

> Z e ST am)|f(n) - A()F

p1<-<ps< pit..phs <z " nggi
V1,.. 7l/s>2 Py 7---,psan

ﬂ (k—1/2)l k/2,.00 B—1
< AaCrmm B(x)" =z (logx)”~".

Therefore, ([7.3) is bounded above by

200) ) Crum =12 B (/2270 (log )8~ 12 Z <l l l)
1y---»5tls

s<l Tl tls=l
l1 LIseN

< 200, Cum V2B (2)F/ 2270 (log )P~ 1T; (1)
< 2O(l)Cmm(n+1/2)lB(x)k/2S(x>’

which allows us to conclude that

Z( )Z (M) (F(n) — A()*(f(n) — F(m)™*
& Cpym 32 B(2)m1/28(x),

provided that in addition 1 < m < B(x)Y/(**+3) Inserting the above es-
timate and the estimate for the term corresponding to k = m into (7.2)
completes the proof of Theorem 2.2
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8. Proof of Theorem (sketch). Now we outline the proof of The-
orem The first step is to redefine f;(n) introduced in Section [4] Again,
let us suppose that Ag € (0, 1) and that |f(p)| < 1 for all primes p. For every
q € N we define

F(U()v q) = H(l - F(O'ij)), ﬁ(do, Q) = p;(j)F(007Q)
pla
For each prime p we put
fo(n) = fp)( - F(oo,p)) ifp|n,
P = f(p)F (00, p) otherwise,

and as before we set
) = H fp(n)
r”|lq

for any ¢ € N. In addition, let ¢, € N be the least positive integer such
that cyg(x) € Zlz], and let Qo > ¢4|g(0)] > 1 be such that (3.17)) holds.
Then for each ¢ € N with P~ (q) > Qo we have Z,(q) = Z7(q) C (Z/qZ)*
and py(q) = #2Z;(q), where Z4(q) denotes the zero locus of g in Z/qZ. In
particular, we have 0 < py(q) < ¢(g), which implies that 0 < ﬁ(oo,q) <1
and |fq(n)| <1 for all n € N.

Next, we need an analogue of Lemma [£.1} Let = be sufficiently large and
set z 1= 29(®)/™m > Q. Then

Z f(p)F(oo,p = Agg(z) +0(1)
Qo<p<z

by (2.1)), (3.17), and the facts that p4 is bounded on prime powers and that
>_pYo(p) < oo. It is easily seen that

Flan)—Arg@) = D folgm)+ D flo)— Y. f(p)F(o0,p)+0(1).

Qo<plz p>z z<p<x
plg(n)
Note that
Z f 00, Aﬁ ( ) Afyg(z)—i—O(l) < log iﬁ-l .
z<p<z (5(.73)

Since 1 < g(n) < n uniformly for all n € N, where d, := degg > 1, we

have
> I < 5o

p>z
plg(n)
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It follows that

S am)(flgm) = Agg(e)™ =S atm)( S flgn)) " +O(E(wm),

n<z n<w Qo<p<z
where - . )
Ey(eim) = 3 ( k)20<m-k><m6<x>—1>m—k 5" a3 fylatn)|
k=0 n<zx p<z

Now we turn to the estimation of

Sam( X Hlee) = S Y al)fyp o).

n<w Qo<p<z Qo<p1,..,pm<zn<x
Let ¢ € NN [1,29)] with w(q) < m, P~(¢q) > Qo and P*(q) < z. Then

Y amfylgn) =Y fol@nd) Y aln)

n<w ab|Rq n<x
ablg(n)
=D falan®) 3. > el
ab|Rq ceZz(ab) n<z

n=c (mod ab)

Thus in place of Lemma[3.3] we need to input in our analysis the information
about the distribution of values of a(n) with n restricted to reduced residue
classes. By Lemma [3.2] the innermost sum differs from

X o= gy tosn)™ () +0( g ) )

n<x
ged(n,ab)
1 — 1
— o B—-1
go(ab)x (log x) <)\aF(O'(), ab) + O ( oz x)A0>>
1 1
=— ) 1 p-1 -
ey o)™ (Fiowan) +0 (-5 ) )
by the amount A, (z;ab, c). Hence,
~ Gs (00, U _
S a(mfy(g(m) = Ao (G1<ao, 2)+0 ((lé(’)j))) o(log 2)P1 + Jy(z),
n<x
where
Gl Uo, Z fq 00 ab)
ab|Ry
G2 UO) pg ‘fq
ab| R,

D)= Y flou®) Y Adlziab,o).

ab| Ry c€Z}(ab)
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It is clear that él and ég are both multiplicative in ¢. Easy calculation
shows that

él (O'07pu)

— FB) F(o0,0) (1 = F(oo,p)) (-1) Flo0,)" " + (1 = F(o,p)" )
for any prime power p”. In particular, él(ao,p) =0, |C~;1(00,Py)’ <1/4, and
G1(00,p”) > 0 when 2 | v. Moreover,

_ - ~ 2 o
G1(00,0%) = f(p)*F(00,p)(1~F(00,p)) = pg(p)f(i) +O(F( ];va) +p12)’

and

Gr(o0.s)] < 110 Floa) < 0020 =y 25 4 0(5)

for all p¥ with p > Qo and v > 2. In addition,

’ Z Ip1-pm (m)‘

Qo<p1,.-,pm <2

< Y u@? ) |Aa(wig, o)

qw(g)<m cEZ) (9)
Pt(g)<z

DIVEDY (kmk) > U@l

a|q s<m ki+-+ks= Qo<p1<-<ps<z
E1,..., kSEN q|p1--ps

The inner sum over s is

Z Z <k1"7?1'7ks>(s—1w(q))!( Z ’fp(a”)S—w(q)

(q) k1t-+ks=m Qo<p<z
k1,....,ks€EN Pl

“ 1
< 90(m) ( m ) log1 s—w(q)
- Z Z ki,..., ks (s—w(q))!(Og 08 7)

Szw(q) ki+--+ks=m
k1,....,ksEN

< 20MT (loglog ) < 29 (loglog 2)™
It follows by (12.5) that

‘ Z Ip1-pm (x)‘

Qo<p1yespm <2
§2O(m)(logloga:)m Z 1(q)* Z |Aa (259, )l
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which is 0o(S(x)). These observations allow us to conclude the proof of The-
orem [2.3] by arguing as in Sections [5] and [6] It is also clear from the last
inequality above that the bound S(z) exp(—(loglog z)'/3+¢) in (2.5 can be
weakened to a complicated one involving é(z) and By 4(x).

9. Proofs of Theorem and Corollary (sketch). Now we
outline the proof of Theorem [2.4] which borrows the ideas from the proofs
of Theorem [2 u and [8, Theorem 1| with proper modifications. Let 0 < € <
min(1, K), and take z := z'/% and

21/l0g(v+2) if B =1,
Wi pl/(elog(o42)) i B #1,

where we recall that v =< m when 8 = 1, and v = (loglog z)™(Y0+2) when
B # 1 as chosen in Section [} Having made these choices, we deduce that
elog(v 4+ 2) — oo as ¢ — oo in the case § # 1. Let

P (z) = {p < z: |f(p)] < ev/B*(2)},
PH(z) = {p < z:e/B*(z) < |f(p)| < K/B*(2)},
Pooa:::{pgx:\fp\>K\/B*x},

and put Pg () := P, (2)UPH (x). We consider the strongly additive function

femm):= Y f)+esn Y,  f)+ Y. f)

pln pln pln
pEP: (z) pePT ()N (2,2] PEPoo ()

where we recall that eg; takes value 0 if 3 =1 and 1 otherwise, and define

a0 0
pEPe (z) P pEPe (x) g
By hypothesis
f(p)? )
B =B = % )l — o),
p<z

and so

2
A(x) - A(2) SJ;T) > el o vE@).
e/ B

We expect that the distribution of f.(n;x) is close to being Gaussian
with mean A(x) and variance B(z) when z gets sufficiently large. In what
follows, we shall restrict our attention to the case 5 # 1, since the opposite
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case is similar and easier. Looking back at the proof of Lemma we find,
for sufficiently large z, that

> f(p)F(00,p) = Ac(x) + O(ey/B*(x)) = A(x) + O(ey/B*(x)),
PEPe (2)N(Qo,2]
so that

(9.1)  fe(nyx) — A(z)
= > KR+ D> flp)+0(eVB()),

ePe (2)N(Qo,z pln
i (=)N(Qo-2] PEPK (z)N(z,w]
where we have used the hypothesis that f(n) = o(y/B(z)) for all n < x

whose prime factors p satisfy |f(p)| > K+/B*(z). This leads to an ana-
logue of Lemma [4.1] in which the second sum above plays the same role as
w(n; z,w). To estimate the moments of f.(n;x), one only needs to recycle the
arguments used in the proof of Theorem [2.1]and make suitable modifications.
For instance, the estimation of

Sam( Y pm)"

n<y pEPe (2)N(Qo,z]

is essentially the same as that of (4.1)) given in Sections {4 and , except that
we use the inequality |f(p)| < ey/B*(x) for p € P_(z) in place of the bound

f(p) = O(1) throughout the argument. This way, we obtain

02 Sam( Y fm)"

nsy PEP: (2)N(Qo,2]
1
= Aol pm + O __cosv B(x)m/zyao(logy)ﬁ_l
logloglog x
= Aa(pm + O(€)) B(x)™*y” (log y)*~!
uniformly for y € [z, x], where 1y € (0,1] is any given constant. On the
other hand, the estimation of the error involving the second sum in ({9.1)

is essentially the same as that of E(y,z,w;m) in the case § # 1 given in
Section [6] The only difference is that we now make use of the estimates

|f(p)| < K\/M for all p € Pk (x) and
S afO cpgene S 4 L

a0
PEPK ()N (z,w] PEPK (z)N(z,w]

< eB*(z)"*logv < eB(z)"/?

for all v > 1, which can be easily seen by considering p € P_(z) and



50 K. (S.) Fan

p € P (x) separately, in place of the estimates f(p) = O(1) and

Z a(p)%i?vl = O(logv) = O(logloglog ),
z<plw

respectively. One shows in this way that the error involving the second sum
in (9.1) is O(eAaB(x)™/ 2y (logy)?~1). Combining this estimate with (9.2)
and taking y = z yields

S@)™ Y an)(f(n;x) — A@))™ = (i + O(€)) B(z)™/?
n<x
for every fixed m € N and all sufficiently large x, where the implied constant
is independent of e.
To complete the proof of Theorem for g # 1, it is sufficient to show

(9.3) S@) ™Y am)|f(n) = fe(n;z)|™ = O(eB*(x)™?)

n<x
for every given € € (0,1) and m € N, where the implicit constant is inde-
pendent of €. Since the case where m is odd follows from the case where m
is even by Cauchy—Schwarz, we only need to consider the latter. The proof
of this case is largely the same as that of [8, Lemma 2|, except for the slight
complication for g € (0,1). When m is even, we have

S@)™' Y am)lf(n) = fe(n;z)[™

n<x
=S(z)7' Y a(n) > f(p1) -+ f(pm),
n<z P1-sPm(n
p17..‘7pmelpj(fl?)ﬂ[2,z]
which, after grouping terms according to the distinct primes among p1, . . ., Pm,
becomes
(9.4)
-1 m ki ks
SCRD YD DU DR (RGNS PSR TA LD SR}
s<m p1<-<ps<z kit+-+ks=m n<x
P1yps€PE () Kireosks €N p1psin

By (3.4) we have

n<x q<z n'<z/q
p1psin Rg=p1--ps ged(n’,q)=1
B—1
o 3T
&K Aoz E qg(i) <log )
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Appealing to (3.3)) we derive

> ()

q<z
Rg=p1-ps
B—1
_ alq alq 3x
D S S S (M
<V e Vr<glz q a
Rq=p1---ps Rg=p1-ps
logfv)”ﬁ 2
< (loga)* T[ - 2% =
i=1v=1 pZ \/>) %
+5-2
-1 (logz)*
= {log2) H< )> MG

These estimates together with (3.4]) imply that (9.4)) is < X 4+ X5, where

m
PRy 2 (k: k )‘f(pl)kl - f(ps)™]
s<m p1<-<ps<z ki+--+ks=m 1y::+yRs
P1,eps€EPT (z) Firoks€EN
TT(5+ i)
(log z)™~!
E = —
AT
m
DO DD SRR (R [T e
s<m p1<--<ps<z ki+-+ks=m 1y Rg
P1yeps€PT (z) FiseosksEN
Since f(p) < K\/B*i for all p € 73+( ), we have
log 2™~ ()2 /2 /2
Yy € == m(2)" B (2)™ " = o(B*(x)™ B*(2)™/2.
2 K (ﬁ)lfgo 71'(2) (x) 0( (x) ) < € ((IJ)
To bound X, we observe
o) (02" < B @) "2 () - £ (o).
Thus,

. !fgp)!
p 0

)

<) (klmk>

ki+-+ks=m
k1,...,ks€N
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* m—s 1 - * s "
_ ZB (x)( )/25(0(6 1./B (7)) Z (]{17“.7]%)

s<m ki+-+ks=m
ki,....ks€N

< eB*(z)™/2.

Combining these estimates completes the proof of in the case 8 # 1.

As mentioned in Section [2], Corollary is an immediate consequence
of Theorem [2.4] when f is strongly additive. The transition to the general
additive case is then accomplished by applying the following analogue of [29]
Theorem B|. This is the only place where we need to make use of character-
istic functions.

LEMMA 9.1. Let f: N — R be an additive function, and let « € M™* with
parameters Ay, 8,00, Yo, 00, 7. Denote by f the strongly additive contraction
of f. Furthermore, suppose that B(x) — oo as x — oo. Then Xy(n) :=
(f(n) — A(N))/+/B(N) admits a limiting distribution function with respect
to the natural probability measure induced by o if and only if )Z'N(n) =
(f(n) — A(N))//B(N) does, in which case they share the same limiting
distribution function.

Proof. As before, we shall assume Ao € (0,1). For each N € N, the
distribution functions of Xy (n) and Xx(n) are given by

Sy(V)= SN Y aln). n(V) =S Y aln),
n<N n<N
XNV Xn<v
respectively. We have to show that @ (V') converges weakly to a distribution
function as N — oo if and only if @5 (V') does, in which case they converge
weakly to the same limit. Note that the characteristic functions of Xy (n)
and Xy (n) are

SON(t) _ S(N)—l Z a(n)eitXN(n)’ SZN(t) _ S(N)_l Z a(n)eit)?N(n)’

n<N n<N
respectively. By Lévy’s continuity theorem [31, Theorem II1.2.6], it suffices
to show that
(9.5) lim (on(t) —@n(t) =0

N—oo

for any given t € R.

To prove this, let us fix t € R and let € € (0,1/(2|t| + 1)) be arbitrary.
Denote by J.(N) the greatest integer not exceeding /N such that |f(n)| <
e/ B(N) for all 1 < n < J(N). Since B(N) /" oo as N — oo, we have
Je(N) /oo as N — oc. By (3.4),
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~ - () — F(n)
lon(t) — N (t)] < S(N)! a(n)lexp| it——F————=) — 1
PN (t) — PN Ez:v p( 5 ) ’

. -1 « Z-f(a)_f(Ra) _ a
= S(N) ;V afa)le p(tB(N) ) 1' b;N/a (b)

asquareful b squarefree
ged(b,a)=1

< SN Y O;(f) <log 35)51 exp (itW) _ 1‘.

a<N
a squareful

From and it follows that
> =TI

a=1 v>2
a squareful

is absolutely convergent for s € C with R(s) > max(go,r) + oo — 1. Thus

= > 2 H(H;p )

a=1
a squareful

for any 6 < 1 — max(go, ). Since

(ORI

<2t < 1
B(N)

for all a < J.(N), this implies

a<;<zv> O;(U? <log 32\7>5‘1 P <itw> - 1‘ < elt|(log N)7~!

a squareful

Now fix 0 < § < 1 — max(gg, ). By partial summation we have

a(a) T1 a(a)
2 : Qo0 = C(O) - S th d( Z aao—&) = C(O) + 0(37_6)
a<zx x a<t
a squareful a squareful

when z is sufficiently large. It follows that

a squareful

Je(N)<a<N
a squareful
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N B—1
3N a(a)
2 (].Og t> d( Z 400 >
Je(N) a<t

a squareful

N B—2
= o(N™%) + o((log NY* 1 J(N)™%) + 0 =19 logg dt
(3, () )

for sufficiently large N. By a change of variable we see that

N N\ A2 log(3N/Je(N))
| t‘1‘5<logt> dt = (3N)™° | P2 dt
Je(N) log 3
3N \° 3N \??
N)™? log ———
<M (5 ("guzv))
< (log N)P2J(N)~°
Hence,

exp (J”‘f”‘”) - 1'

Je(N)<a<N B(N)
a squareful

= o((log N)*~J(N)™%)
for sufficiently large N. Gathering the above estimates, we obtain
PN (t) — PN (t) < elt] + o(J(N)70)
for sufficiently large IV, where the implicit constants are independent of ¢, €
and N. From this estimate we infer that
limsup |on(t) — on (1) = O(elt]),
N—o0

where the implicit constant is independent of ¢ and €. As e € (0,1/(2|t|+1))
is arbitrary, we obtain (9.5 as desired. =

REMARK 9.1. Let a(n) = 7(n)?/n!t, Where T is Ramanujan S T- function
and define the additive function f(n) by f(p”) = log\/a(p¥) if a(p
and f(p”) = 0 otherwise, where p” is any prlme power. Then a(n) satlsﬁes
conditions f with any fixed Ag > 0, 8 =1, g9 = 1, Y9 = 0, and
any fixed gp € (0,1) and r € (1/2,1). Moreover, a(n) < d(n)? by Deligne’s
bound [9]. As alluded to in Section [2] Elliott [12] showed, using ideas from
probability theory, that the limiting distribution of (f(n ) A(z))//B
with respect to the natural probability measure induced by « is the standard
Gaussian distribution. In fact, we can derive his result from Corollary
in combination with Lemma and [12, Lemma 7| without difficulty. In
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comparison to Elliott’s probabilistic approach, our approach enables us to
get around some of the complications resulting from the analysis of 7(n).

To illustrate this, let llb consider the strongly additive function fo(n)
defined by fo(p) = log+/a(p) if p ¢ Ey and fo(p) = 0 otherwise, where
Ey == {p > 2: a( ) < exp( 2{/loglogp)}. Denote by Ag(z) and By(z),
respectively, the expected mean and variance of fy(n) weighted by a(n). It
can be shown [12, Lemma 7| that B(z) < loglog x. Since t|logt| < v/t for all
t € [0, 1], we have

> ap) VPl < 37 VOO 5 Ly ioglogp) < oo

p<z p<z p p>2

pEEy pEEg
It follows that Ag(x) = A(x)+O(1). A similar argument shows that By(z) =
B(z) + O(1) < loglogx. Thus, fo(p) = O(By(p)*/?) for all p, which shows
that fo(n) satisfies the hypotheses in Corollary [2.5] Hence, the limiting dis-
tribution of (fo(n) — /+/B(z) with respect to the natural probability
measure induced by « is the etandarQ Gaussian distribution.

To complete our argument, let f be the strongly additive contraction
of f. Then fo(n) > f(n) for all n € N. Moreover, Deligne’s bound and the
fact that 7(n) € Z for all n € N imply that —(11logp)/2 < f(p) < log2
whenever a(p) # 0. Since

sl o +Z (17 _a;p)+0<]912>’

v>1 p v>2
we have
S(x)™1> " a(n)(fo(n) — f(n)) = Sx)~' > If () D an
n<x p<zx n<z
PEED pln
STU®ID e@) Y a@)
p<z v>1 n/gx/pv
p€Eo pin’
< S(x 1/\axz |f(p) Z ( V)
p<lzx v>1
PEEO
<> o @l O(Z log2p> < 1.
p<z p>2 p
pEEo

This estimate is sufficient for us to conclude that the limiting distribution
of (f(n) — A(z))/+/B(z) with respect to the natural probability measure
induced by « is also the standard Gaussian distribution. By Lemma [0.1] the

same is true for (f(n) — A(z))/+v/B(z).
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10. Concluding remarks. Although in the present paper we only fo-
cused on the subclass M* of multiplicative functions, it is also of interest
to consider weight functions a(n) which satisfy certain Landau-Selberg—
Delange type conditions. Given more information about «(n) and its asso-
ciated Dirichlet series F'(s) = Y .2 | a(n)n™*, better results are obtainable
in some circumstances. Below we give a brief description of the method in
the special case where F'(s) is close to an integral power of the Riemann
zeta-function ((s).

For s € C, we write 0 = R(s) and ¢t = (s). Let a: N — R>¢ be
a multiplicative function whose Dirichlet series F(s) = > 2 a(n)n™*% is
absolutely convergent for s € C with o > o0g, where o9 > 0 is constant.
Suppose that there exist constants § € N, 0 <99 < g9, B>0and 0 < < 1
such that Hg(s) := F(s)((s — 0o + 1)~ has an analytic continuation in the
half-plane ¢ > 9y with

lim F(s)(s — a0)? >0,

s—oq
and such that |Hg(s)| < B(1 + |t|)'7° for all s € C with o > . It is clear
that F'(s) has (absolute) abscissa of convergence 0. Adapting the argument
used in the proof of [24, Lemma 2.1| or [31, Theorem II.5.2|, one can show
that there exists some constant €y > 0 such that

1 F s
(10.1) S(z) = - ReSs—0, (s _(53:: 1>
N w0
— 2% (log )% 1 Z Z Cjk (iuj G +0(Bz")
k=1 j=0 08T

uniformly for all x > 3 and ¥ € (0 — €9, 00), where

ke SIS — O B
i Bz

(=1)* (00 — 1)

) 73,k - IR
s=0g (5 —k— 1)‘0'](;; 7
and the implicit constant in the error term depends at most on 3, g, ¥, 9, €g.
Notably, one gains an asymptotic for S(x) with a power-saving error term
uniformly in B, in contrast to what is provided by (3.4]). Furthermore, sup-

pose that there exists a constant A > 0 such that a(p”) = O((A\p°°~1)¥) for
all prime powers p¥. Let

F(s,a):= H(l - (i a(pl,)p_,,s)*l)

pla v=0

Tk dsk

for s € C with o > 9y and squarefree a € N. When s = o, this definition
coincides with the one introduced in Lemma [3:3] As in the proof of that
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lemma, it is not hard to show that

(10.2) F(s,p) = o) O(a(p)2 P )

s p20‘ p2(0700+1)

for all s € C with ¢ > Yy and all sufficiently large p. In addition,

Z (HZ v —Vs) (Hia<pu)p—us>

ZTTL pla v=0 pla v=1
SIS et ) (IS ¥ ™) = Fs)F(s,a)
pla v=0 pla v=1

for s € C with ¢ > 0¢ and squarefree a € N. Applying to the above
Dirichlet series expansion of F(s)F(s,a) and using to obtain upper
bounds for Hg(s)F(s,a) uniformly in o > 9y, we see that there exist con-
stants € € (0,1), Qo > 2 and d; € R, where 0 < j < k < f3, such that

(10.3) Za(n) = deo(logw)ﬁfl

—1)!
aln 51 k UO )
k=1 j5=0 g

+ O(BQO(w(a))aao 1(.%‘/(1)19)

uniformly for all z > 3, ¥ € (09 — €,00) and squarefree a € N with P~ (a)
> Qo, where FU)(gy, a) is the jth order derivative of F (s, a) with respect to s
evaluated at s = 0g. Again, one may compare this result with Lemma

Now, if f: N — R is a strongly additive function with |f(p)| < M for all
primes p, where M > 0 is constant, and if 0 < hy < (3/2)%? is fixed but
arbitrary, then by using as a substitute for Lemma and arguing as
before with the technique of |24, Section 4.2|, we deduce that

M(x;m) = Cp B(z)™/” <Xm + O( m;z;»

uniformly for all sufficiently large = and all 1 < m < ho(B(z)/M?)'/3,
provided that B(x) — 0o as x — oo. Analogously, let f: N — R be strongly
additive such that f(p) = O(y/B(p)) for all primes p, B(x) — oo as x — o0,
and

p<w

|[f(p)|>e/B(2)
for any given € > 0. Then M(x;m) = (pm + o(1))B(z)™/? for every fixed
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m € N. These results supplement Theorems and 2:4] It may be worth
pointing out that in the proofs of these results one can simply take z = /v
with v being a suitable constant multiple of m. We invite the reader to fill
in the details.

One of the key ingredients in the proof of Theorem [2.1]is an asymptotic

formula for
> a(n),

n<zx

dn
which is provided by Lemma More generally, let A(x) = {a,}n<s be a
nondecreasing sequence of positive integers, and suppose that

(10.4) Aga(z) = a(n) = p(d)S(z) + rq(z)

n<x

dlan
for squarefree integers d € N, where p: N — [0, 1] is a multiplicative function,
and 74(x) is a remainder term which is expected to be small for all d or
small on average over d. Here, p(d) can be viewed as the density of the set
{n € N: d | ay} with respect to the probability measure induced by «. In this
sieve-theoretic setting one can derive, without much difficulty, an analogue
of [17, Proposition 4|. It may be of interest to determine if such an analogue
can be used to obtain general weighted Erdés—Kac theorems for various
interesting sequences {a, } studied relatively recently, including g(p,,), ¢(n),
the Carmichael function A\(n), and the aliquot sum s(n) := o(n) — n, where
g € Zx] is an irreducible polynomial, p,, is the nth prime, and A(n) denotes
the exponent of (Z/nZ)* (see |20} 14} [16], 27]). The same approach may also
be adapted to prove results of weighted Erdés—Kac type for short intervals
as well as in the function field setting. We hope to return to these and other
related problems in the future.
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